A projected decrease in lightning under climate change

Source: Nature.com

  • 1.

    Schumann, U. & Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 7, 3823–3907 (2007).

  • 2.

    Murray, L. T. Lightning NOx and impacts on air quality. Curr. Pollut. Rep. 2, 115–133 (2016).

  • 3.

    Tost, H. Chemistry-climate interactions of aerosol nitrate from lightning. Atmos. Chem. Phys. 17, 1125–1142 (2017).

  • 4.

    Krause, A., Kloster, S., Wilkenskjeld, S. & Paeth, H. The sensitivity of global wildfires to simulated past, present, and future lightning frequency. J. Geophys. Res. Biogeosci. 119, 312–322 (2014).

  • 5.

    Price, C. & Rind, D. Possible implications of global climate change on global lightning distributions and frequencies. J. Geophys. Res. 99, 10823–10831 (1994).

  • 6.

    Clark, S. K., Ward, D. S. & Mahowald, N. M. Parameterization-based uncertainty in future lightning flash density. Geophys. Res. Lett. 44, 2893–2901 (2017).

  • 7.

    Banerjee, A. et al. Lightning NOx, a key chemistry–climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity. Atmos. Chem. Phys. 14, 9871–9881 (2014).

  • 8.

    Reynolds, S. E., Brook, M. & Gourley, M. F. Thunderstorm charge separation. J. Meteorol. 14, 426–436 (1957).

  • 9.

    Price, C. & Rind, D. A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. 97, 9919–9933 (1992).

  • 10.

    Finney, D. L. et al. Using cloud ice flux to parametrise large-scale lightning. Atmos. Chem. Phys. 14, 12665–12682 (2014).

  • 11.

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (IPCC, Cambridge Univ. Press, 2013).

  • 12.

    Latham, J., Petersen, W. A., Deierling, W. & Christian, H. J. Field identification of a unique globally dominant mechanism of thunderstorm electrification. Q. J. R. Meteorol. Soc. 133, 1453–1457 (2007).

  • 13.

    Zeng, G., Pyle, J. A. & Young, P. J. Impact of climate change on tropospheric ozone and its global budgets. Atmos. Chem. Phys. 8, 369–387 (2008).

  • 14.

    Jiang, H. & Liao, H. Projected changes in NOx emissions from lightning as a result of 2000-2050 climate change. Atmos. Ocean. Sci. Lett. 6, 284–289 (2013).

  • 15.

    Williams, E. R. Lightning and climate: A review. Atmos. Res. 76, 272–287 (2005).

  • 16.

    Price, C. G. Lightning applications in weather and climate research. Surv. Geophys. https://doi.org/10.1007/s10712-012-9218-7 (2013).

  • 17.

    Allen, D. J. & Pickering, K. E. Evaluation of lightning flash rate parameterizations for use in a global chemical transport model. J. Geophys. Res. Atmos. 107, 15–21 (2002).

  • 18.

    Finney, D.L., Doherty, R. M., Wild, O., Young, P. J. & Butler, A. Response of lightning NOx emissions andozone production to climate change: Insights from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Geophys. Res. Lett 43, 5492–5500 (2016).

  • 19.

    Tost, H., Jöckel, P. & Lelieveld, J. Lightning and convection parameterisations – uncertainties in global modelling. Atmos. Chem. Phys. 7, 4553–4568 (2007).

  • 20.

    Jacobson, M. Z. & Streets, D. G. Influence of future anthropogenic emissions on climate, natural emissions, and air quality. J. Geophys. Res. 114, D08118 (2009).

  • 21.

    Finney, D. L., Doherty, R. M., Wild, O. & Abraham, N. L. The impact of lightning on tropospheric ozone chemistry using a new global lightning parametrisation. Atmos. Chem. Phys. 16, 7507–7522 (2016).

  • 22.

    van Vuuren, D. P. et al. The representative concentration pathways: An overview. Clim. Change 109, 5–31 (2011).

  • 23.

    Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).

  • 24.

    Satori, G., Williams, E. & Lemperger, I. Variability of global lightning activity on the ENSO time scale. Atmos. Res. 91, 500–507 (2009).

  • 25.

    Bond, D. W., Steiger, S., Zhang, R., Tie, X. & Orville, R. E. The importance of NOx production by lightning in the tropics. Atmos. Environ. 36, 1509–1519 (2002).

  • 26.

    Kang, S. M., Deser, C. & Polvani, L. M. Uncertainty in climate change projections of the Hadley circulation: The role of internal variability. J. Clim. 26, 7541–7554 (2013).

  • 27.

    Jiang, J. H. et al. Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA ‘ATrain’ satellite observations. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017237 (2012).

  • 28.

    Jacob, D. J., & Winner, D. A. Effect of climate change on air quality. Atmos. Environ. 43, 51–63 (2009).

  • 29.

    Toumi, R., Haigh, J. D. & Law, K. S. A tropospheric ozone-lightning climate feedback. Geophys. Res. Lett. 23, 1037–1040 (1996).

  • 30.

    Dahlmann, K., Grewe, V., Ponater, M. & Matthes, S. Quantifying the contributions of individual NOx sources to the trend in ozone radiative forcing. Atmos. Environ. 45, 2860–2868 (2011).

  • 31.

    Liaskos, C. E., Allen, D. J. & Pickering, K. E. Sensitivity of tropical tropospheric composition to lightning NOx production as determined by the NASA GEOS-Replay model. J. Geophys. Res. Atmos. 120, 8512–8534 (2015).

  • 32.

    Wild, O., Prather, M. J. & Akimoto, H. Indirect long-term global radiative cooling from NOx emissions. Geophys. Res. Lett. 28, 1719–1722 (2001).

  • 33.

    Stevenson, D. S. et al. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 3063–3085 (2013).

  • 34.

    Walters, D. N. et al. The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations. Geosci. Model Dev. 7, 361–386 (2014).

  • 35.

    O’Connor, F. M. et al. Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere. Geosci. Model Dev. 7, 41–91 (2014).

  • 36.

    Wilson, D. R., Bushell, A. C., Kerr-Munslow, A. M., Price, J. D. & Morcrette, C. J. PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Q. J. R. Meteorol. Soc. 134, 2093–2107 (2008).

  • 37.

    Wilson, D. R. et al. PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations. Q. J. R. Meteorol. Soc. 134, 2109–2125 (2008).

  • 38.

    Morcrette, C. J. Improvements to a prognostic cloud scheme through changes to its cloud erosion parametrization. Atmos. Sci. Lett. 13, 95–102 (2012).

  • 39.

    Waliser, D. E. et al. Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res. 114, D00A21 (2009).

  • 40.

    Li, J. L. F. et al. An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD017640 (2012).

  • 41.

    Lamarque, J. F. et al. Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 10, 7017–7039 (2010).

  • 42.

    Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

  • 43.

    Rossow, W. B., Walker, A. W., Beuschel, D. E. & Roiter, M. D. International Satellite Cloud ClimatologyProject (ISCCP) Documentation of New Cloud Datasets WMO/TD-No. 737 (World Meteorological Organization,1996).

  • 44.

    Mansell, E. R., MacGorman, D. R., Ziegler, C. L. & Straka, J. M. Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res. Atmos. 107, ACL 2-1–ACL 2-12 (2002).

  • 45.

    Barthe, C., Deierling, W. & Barth, M. C. Estimation of total lightning from various storm parameters: a cloud-resolving model study. J. Geophys. Res. 115, D24202 (2010).

  • 46.

    Barthe, C., Chong, M., Pinty, J. P., Bovalo, C. & Escobar, J. CELLSv1.0: updated and parallelized version of an electrical scheme to simulate multiple electrified clouds and flashes over large domains. Geosci. Model Dev. 5, 167–184 (2012).

  • 47.

    Fierro, A. O., Mansell, E. R., MacGorman, D. R. & Ziegler, C. L. The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW model: benchmark simulations of a continental squall line, a tropical cyclone, and a winter storm. Mon. Weather Rev. 141, 2390–2415 (2013).

  • 48.

    Basarab, B. M., Rutledge, S. A. & Fuchs, B. R. An improved lightning flash rate parameterization developed from Colorado DC3 thunderstorm data for use in cloud-resolving chemical transport models. J. Geophys. Res. 120, 9481–9499 (2015).

  • 49.

    Hoerling, M. P., Schaack, T. K. & Lenzen, A. J. A global analysis of stratospheric–tropospheric exchange during northern winter. Mon. Weather Rev. 121, 162–172 (1993).

  • 50.

    Ott, L. E. et al. Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations. J. Geophys. Res. 115, D04301 (2010).

  • 51.

    Cecil, D. J., Buechler, D. E. & Blakeslee, R. J. Gridded lightning climatology from TRMM-LIS and OTD: dataset description. Atmos. Res. 135–136, 404–414 (2014).

  • 52.

    Prather, M. J. et al. in Climate Change 2001: The Scientific Basis (eds Houghton, J. T., Ding, Y. & Griggs, D. J.) (IPCC, Cambridge Univ. Press, 2001).

  • 53.

    Voulgarakis, A. et al. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys. 12, 22945–23005 (2013).

  • 54.

    Myhre, G., Highwood, E. J., Shine, K. P. & Stordal, F. New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 25, 2715–2718 (1998).

  • 55.

    Wild, O. et al. Modelling future changes in surface ozone: a parameterized approach. Atmos. Chem. Phys. 12, 2037–2054 (2012).

  • http://feeds.nature.com/~r/nclimate/rss/current/~3/Hmbv1tkITk4/s41558-018-0072-6