Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2

  • 1.

    Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).

  • 2.

    Rodgers, K. B. et al. A wintertime uptake window for anthropogenic CO2 in the North Pacific. Glob. Biochem. Cycles 22, GB2020 (2008).

  • 3.

    Hauck, J. & Völker, C. Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor. Geophys. Res. Lett. 42, 1459–1464 (2015).

  • 4.

    Doney, S., Fabry, V., Feely, R. A. & Kleypas, J. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).

  • 5.

    Sarmiento, J. M. et al. Trends and regional distributions of land and ocean carbon sinks. Biogeosciences 7, 2351–2367 (2010).

  • 6.

    Sarmiento, J. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, New Jersey, 2006).

  • 7.

    Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

  • 8.

    Delille, B. et al. Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. Glob. Biogeochem. Cycles 19, GB2023 (2005).

  • 9.

    McNeil, B. I. & Sasse, T. P. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. Nature 529, 383–386 (2016).

  • 10.

    Sabine, C. L. et al. Surface Ocean CO2 Atlas (SOCAT) gridded data products. Earth Syst. Sci. Data 5, 145–153 (2013).

  • 11.

    Bakker, D. C. E. et al. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 8, 383–413 (2016).

  • 12.

    Landschützer, P. et al. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences 10, 7793–7815 (2013).

  • 13.

    Landschützer, P., Gruber, N. & Bakker, D. C. E. Decadal variations and trends of the global ocean carbon sink. Glob. Biogeochem. Cycles 30, 1396–1417 (2016).

  • 14.

    Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J. & Karl, D. M. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc. Natl. Acad. Sci. USA 106, 12235–12240 (2009).

  • 15.

    Gruber, N., Keeling, C. D. & Bates, N. R. Interannual variability in the North Atlantic Ocean carbon sink. Science 298, 2374–2378 (2002).

  • 16.

    Bates, N. R. Multi-decadal uptake of carbon dioxide into subtropical mode water of the North Atlantic Ocean. Biogeosciences 9, 2649–2659 (2012).

  • 17.

    Phillips, H. E. & Joyce, T. M. Bermuda’s tale of two time series: Hydrostation ‘S’ and BATS. J. Phys. Oceanogr. 37, 554–571 (2006).

  • 18.

    Takahashi, T., Olafsson, J., Goddard, J., Chipman, D. & Sutherland, S. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Glob. Biogeochem. Cycles 7, 843–878 (1993).

  • 19.

    Takahashi, T. et al. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep.-Sea Res. II 49, 1601–1622 (2002).

  • 20.

    Gorgues, T., Aumont, O. & Rodgers, K. B. A mechanistic account of increasing seasonal variations in the rate of ocean uptake of anthropogenic carbon. Biogeosciences 7, 2581–2589 (2010).

  • 21.

    Le Quéré, C. et al. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316, 1735–1738 (2007).

  • 22.

    Landschützer, P. et al. The reinvigoration of the Southern Ocean carbon sink. Science 349, 1221–1224 (2015).

  • 23.

    DeVries, T., Holzer, M. & Primeau, F. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature 542, 215–218 (2017).

  • 24.

    Monteiro, P. M. S. et al. Intraseasonal variability linked to sampling alias in air-sea CO2 fluxes in the Southern Ocean. Geophys. Res. Lett. 42, 8507–8514 (2015).

  • 25.

    Rödenbeck, C. et al Data-based estimates of the ocean carbon sink variability—first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM). Biogeosciences 12, 7251–7278 (2015).

  • 26.

    Bates, N. et al. A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27, 126–141 (2014).

  • 27.

    Lauvset, S. K., Gruber, N., Landschützer, P., Olsen, A. & Tjiputra, J. Trends and drivers in global surface ocean pH over the past 3 decades. Biogeosciences 12, 1285–1298 (2015).

  • 28.

    Gruber, N. et al. Rapid progression of ocean acidification in the California Current System. Science 337, 220–223 (2012).

  • 29.

    McKinley, G. A. et al. Timescales for detection of trends in the ocean carbon sink. Nature 530, 469–472 (2016).

  • 30.

    Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).

  • 31.

    Lovenduski, N. S., Gruber, N., Doney, S. C. & Lima, D. I. Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Glob. Biogeochem. Cycles 21, GB2026 (2007).

  • 32.

    Zeebe, P. E. & Wolf-Gladrow, D. CO 2in Seawater: Equilibrium, Kinetics, Isotopes (Elsevier, Amsterdam, 2001).

  • 33.

    Lee, K. et al. Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophys. Res. Lett. 33, L19605 (2006).

  • 34.

    Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).

  • 35.

    Lauvset, S. K. et al. A new global interior ocean mapped climatology: the 1°×1° GLODAP version 2. Earth Syst. Sci. Data 8, 325–340 (2016).

  • 36.

    Olsen, A. et al. The Global Ocean Data Analysis Project version 2 (GLODAPv2)—an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8, 297–323 (2016).

  • 37.

    Key, R. et al. Global Ocean Data Analysis Project version 2 (GLODAPv2), ORNL/CDIAC-162, ND-P093 (Carbon Dioxide Information Analysis Center, 2015), https://doi.org/10.3334/CDIAC/OTG.NDP093_GLODAPv2.