Towards process-informed bias correction of climate change simulations

Source: Nature.com

  • 1.

    Hewitson, B. C., Daron, J., Crane, R. G., Zermoglio, M. F. & Jack, C. Interrogating empirical-statistical downscaling. Climatic Change 122, 539–554 (2014).

  • 2.

    Adams, P. et al. Toward an Ethical Framework for Climate Services: A White Paper of the Climate Services Partnership Working Group on Climate Services Ethics (2015); http://www.climate-services.org/wp-content/uploads/2015/09/CS-Ethics-White-Paper-Oct-2015.pdf

  • 3.

    Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 741–866 (IPCC, Cambridge Univ. Press, 2014).

  • 4.

    Kotlarski, S. et al. Regional climate modelling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model. Dev. Discuss. 7, 217–293 (2014).

  • 5.

    Maurer, E. P., Brekke, L., Pruitt, T. & Duffy, P.B. Fine-resolution climate projections enhance regional climate change impact studies. Eos 88, 504 (2007).

  • 6.

    Li, H., Sheffield, J. & Wood, E. F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. 115, D10101 (2010).

  • 7.

    Dosio, A., Paruolo, P. & Rojas, R. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: analysis of the climate change signal. J. Geophys. Res. 117, D17110 (2012).

  • 8.

    Hagemann, S. et al. Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeorol. 12, 556–578 (2011).

  • 9.

    Stoner, A. M. K., Hayhoe, K., Yang, X. & Wuebbles, D. J. An asynchronous regional regression model for statistical downscaling of daily climate variables. Int. J. Climatol. 33, 2473–2494 (2013).

  • 10.

    Girvetz, E. H. et al. Making Climate Data Relevant to Decision Making: The Important Details of Spatial and Temporal Downscaling (The World Bank, 2013).

  • 11.

    Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—the ISI-MIP approach. Earth Syst. Dyn. 4, 219–236 (2013).

  • 12.

    Maurer, E. P. et al. An enhanced archive facilitating climate impact and adaptation analysis. Bull. Am. Meteorol. Soc. 95, 1011–1019 (2014).

  • 13.

    CORDEX. Bias-adjusted RCM data (2016); http://www.cordex.org/index.php?option=com_content&view=article id=275 Itemid=785

  • 14.

    Gangopadhyay, S., Pruitt, T., Brekke, L. & Raff, D. Hydrologic projections for the Western United States. Eos 92, 441–442 (2011).

  • 15.

    Hagemann, S. et al. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst. Dynam. 4, 129–144 (2013).

  • 16.

    Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP): Project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

  • 17.

    Cayan, D. et al. In Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment 101–125 (Island Press, 2014).

  • 18.

    Turn Down the Heat: Climate Extremes, Regional Impacts, and the Case for Resilience (World Bank, 2013).

  • 19.

    Georgakakos, A. et al. In Climate Change Impacts in the United States: The Third National Climate Assessment 69–112 (US Global Change Research Program, 2014).

  • 20.

    Climate Change Knowledge Portal (World Bank; accessed July 2017); http://sdwebx.worldbank.org/climateportal/

  • 21.

    prepdata. Partnership for Resilience and Preparedness (PREP; accessed July 2017 ); http://www.prepdata.org

  • 22.

    Maraun, D. et al. Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 48, RG3003 (2010).

  • 23.

    Teutschbein, C. & Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J. Hydrol. 456, 12–29 (2012).

  • 24.

    Piani, C., Haerter, J. O. & Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 99, 187–192 (2010).

  • 25.

    Vannitsem, S. Bias correction and post-processing under climate change. Nonlin. Proc. Geophys. 18, 911–924 (2011).

  • 26.

    Eden, J., Widmann, M., Grawe, D. & Rast, S. Skill, correction, and downscaling of GCM-simulated precipitation. J. Clim. 25, 3970–3984 (2012).

  • 27.

    Maraun, D. Bias correction, quantile mapping and downscaling: revisiting the inflation issue. J. Clim. 26, 2137–2143 (2013).

  • 28.

    Maraun, D. & Widmann, M. The representation of location by a regional climate model in complex terrain. Hydrol. Earth Syst. Sci. 19, 3449–3456 (2015).

  • 29.

    Addor, N., Rohrer, M., Furrer, R. & Seibert, J. Propagation of biases in climate models from the synoptic to the regional scale: implications for bias adjustment. J. Geophys. Res. 121, 2075–2089 (2016).

  • 30.

    Stocker, T. F., Dahe, Q., Plattner, G.-K. & Tignor, M. IPCC Workshop on Regional Climate Projections and their Use in Impacts and Risk Analysis Studies (2016); https://www.ipcc.ch/pdf/supporting-material/RPW_WorkshopReport.pdf

  • 31.

    Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K. & Liebert, J. Should we apply bias correction to global and regional climate model data? Hydrol. Earth Syst. Sci. 16, 3391–3404 (2012).

  • 32.

    Haerter, J. O., Hagemann, S., Moseley, C. & Piani, C. Climate model bias correction and the role of timescales. Hydrol. Earth Syst. Sci. 15, 1065–1079 (2011).

  • 33.

    Johnson, F. & Sharma, A. A nesting model for bias correction of variability at multiple time scales in general circulation model precipitation simulations. Wat. Resour. Res. 48, W01504 (2012).

  • 34.

    Michelangeli, P.-A., Vrac, M. & Loukos, H. Probabilistic downscaling approaches: application to wind cumulative distribution functions. Geophys. Res. Lett. 36, L11708 (2009).

  • 35.

    Piani, C. & Haerter, J. O. Two dimensional bias correction of temperature and precipitation copulas in climate models. Geophys. Res. Lett. 39, L20401 (2012).

  • 36.

    Vrac, M. & Friederichs, P. Multivariate-intervariable, spatial, and temporal-bias correction. J. Clim. 28, 218–237 (2015).

  • 37.

    Levy, A. A. L. et al. Can correcting feature location in simulated mean climate improve agreement on projected changes? Geophys. Res. Lett. 40, 354–358 (2013).

  • 38.

    Barsugli, J. J. et al. The practitioner’s dilemma: How to assess the credibility of downscaled climate projections. Eos 94, 424–425 (2013).

  • 39.

    Wang, C., Zhang, L., Lee, S.-K., Wu, L. & Mechoso, C. R. A global perspective on CMIP5 climate model biases. Nat. Clim. Change 4, 201–205 (2014).

  • 40.

    Christensen, J. H., Boberg, F., Christensen, O. B. & Lucas-Picher, P. On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett. 35, L20709 (2008).

  • 41.

    Buser, C. M., Künsch, H. R., Lüthi, D., Wild, M. & Schär, C. Bayesian multi-model projection of climate: bias assumptions and interannual variability. Clim. Dynam. 33, 849–868 (2009).

  • 42.

    Maraun, D. Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys. Res. Lett. 39, L06706 (2012).

  • 43.

    Teutschbein, C. & Seibert, J. Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrol. Earth Syst. Sci. 17, 5061–5077 (2013).

  • 44.

    Johnson, F. & Sharma, A. Accounting for interannual variability: a comparison of options for water resources climate change impact assessments. Wat. Resour. Res. 47, W04508 (2011).

  • 45.

    Berg, P., Feldmann, H. & Panitz, H.-J. Bias correction of high resolution regional climate model data. J. Hydrol. 448–449, 80–92 (2012).

  • 46.

    Chen, C., Haerter, J. O., Hagemann, S. & Piani, C. On the contribution of statistical bias correction to the uncertainty in the projected hydrological cycle. Geophys. Res. Lett. 38, L20403 (2011).

  • 47.

    Dosio, A. & Paruolo, P. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: evaluation on the present climate. J. Geophys. Res. 116, D16106 (2011).

  • 48.

    Themeßl, M. J., Gobiet, A. & Leuprecht, A. Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol. 31, 1530–1544 (2011).

  • 49.

    Gudmundson, L., Bremnes, J. B., Haugen, J. E. & Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations a comparison of methods. Hydrol. Earth Syst. Sci. 16, 3383–3390 (2012).

  • 50.

    Rajczak, J., Kotlarski, S. & Schär, C. Does quantile mapping of simulated precipitation correct for biases in transition probabilities and spell lengths? J. Clim. 29, 1605–1615 (2016).

  • 51.

    Masato, G., Hoskins, B. J. & Woollings, T. Winter and summer Northern Hemisphere blocking in CMIP5 models. J. Clim. 26, 7044–7059 (2013).

  • 52.

    Woollings, T. Dynamical influences on European climate: an uncertain future. Phil. Trans. R. Soc. A 368, 3733–3756 (2010).

  • 53.

    Zappa, G., Shaffrey, L. C. & Hodges, K. I. The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J. Clim. 26, 5379–5396 (2013).

  • 54.

    Davini, P. et al. Climate SPHINX: evaluating the impact of resolution and stochastic physics parameterisations in the EC-Earth global climate model. Geosci. Model Dev. 10, 1383–1402 (2017).

  • 55.

    Pithan, F., Shepherd, T. G., Zappa, G. & Sandu, I. Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag. Geophys. Res. Lett. 43, 7231–7240 (2016).

  • 56.

    van Niekerk, A., Scinocca, J. F. & Shepherd, T. G. The modulation of stationary waves, and their response to climate change, by parameterized orographic drag. J. Atmos. Sci. 74, 2557–2574 (2017).

  • 57.

    Ashfaq, M., Skinner, C. B. & Diffenbaugh, N. S. Influence of SST biases on future climate change projections. Clim. Dynam. 36, 1303–1319 (2011).

  • 58.

    Scaife, A. A. et al. Improved Atlantic winter blocking in a climate model. Geophys. Res. Lett. 38, L23703 (2011).

  • 59.

    Keeley, S. P. E., Sutton, R. T. & Shaffrey, L. C. The impact of North Atlantic sea surface temperature errors on the simulation of North Atlantic European region climate. Q. J. R. Meteorol. Soc. 138, 1774–1783 (2012).

  • 60.

    Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

  • 61.

    Hall, A. Projecting regional change. Science 346, 1461–1462 (2014).

  • 62.

    Colette, A., Vautard, R. & Vrac, M. Regional climate downscaling with prior statistical correction of the global climate forcing. Geophys. Res. Lett. 39, L13707 (2012).

  • 63.

    Maurer, E. P. & Pierce, D. W. Bias correction can modify climate model simulated precipitation changes without adverse effect on the ensemble mean. Hydrol. Earth Syst. Sci. 18, 915–925 (2014).

  • 64.

    Gobiet, A., Suklitsch, M. & Heinrich, G. The effect of empirical-statistical correction of intensity-dependent model errors on the temperature climate change signal. Hydrol. Earth Syst. Sci. 19, 4055–4066 (2015).

  • 65.

    Pierce, D. W., Cayan, D. R., Maurer, E. P., Abatzoglou, J. T. & Hegewisch, K. C. Improved bias correction techniques for hydrological simulations of climate change. J. Hydrometeorol. 16, 2421–2442 (2015).

  • 66.

    Switanek, M. B. et al. Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes. Hydrol. Earth Syst. Sci. 21, 2649–2666 (2017).

  • 67.

    Bellprat, O., Kotlarski, S., Lüthi, D. & Schär, C. Physical constraints for temperature biases in climate models. Geophys. Res. Lett. 40, 4042–4047 (2013).

  • 68.

    Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M. & Vialard, J. ENSO representation in climate models: from CMIP3 to CMIP5. Clim. Dynam. 42, 1999–2018 (2014).

  • 69.

    Chen, L., Li, T. & Yu, Y. Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J. Clim. 28, 3250–3274 (2015).

  • 70.

    Collins, M. et al. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2015).

  • 71.

    Annamalai, H., Hafner, J., Sooraj, K. P. & Pillai, P. Global warming shifts the monsoon circulation, drying South Asia. J. Clim. 26, 2701–2718 (2013).

  • 72.

    Roxy, M. K. et al. Drying of indian subcontinent by rapid indian ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 6, 7423 (2015).

  • 73.

    Willison, J., Robinson, W. A. & Lackmann, G. M. North atlantic storm-track sensitivity to warming increases with model resolution. J. Clim. 28, 4513–4524 (2015).

  • 74.

    Hall, A., Qu, X. & Neelin, J. D. Improving predictions of summer climate change in the united states. Geophys. Res. Lett. 35, L01702 (2008).

  • 75.

    Christensen, J. H. & Boberg, F. Temperature dependent climate projection deficiencies in CMIP5 models. Geophys. Res. Lett. 39, L24705 (2012).

  • 76.

    Kendon, E. J. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 4, 570–576 (2014).

  • 77.

    Meredith, E. P., Maraun, D., Semenov, V. A. & Park, W. Evidence for added value of convection permitting models for studying changes in extreme precipitation. J. Geophys. Res. 120, 12500–12513 (2015).

  • 78.

    Collins, M. et al. Quantifying future climate change. Nat. Clim. Change 2, 403–409 (2012).

  • 79.

    Simpson, I. R., Seager, R., Ting, M. & Shaw, T. A. Causes of change in northern hemisphere winter meridional winds and regional hydroclimate. Nat. Clim. Change 6, 65–70 (2016).

  • 80.

    Qu, X. & Hall, A. On the persistent spread in snow-albedo feedback. Clim. Dynam. 4, 69–81 (2014).

  • 81.

    Dawson, A., Palmer, T. N. & Corti, S. Simulating regime structures in weather and climate prediction models. Geophys. Res. Lett. 39, L21805 (2012).

  • 82.

    Liu, P. et al. An MJO simulated by the NICAM at 14- and 7-km resolutions. Mon. Weath. Rev. 137, 3254–3268 (2009).

  • 83.

    Prein, A. F. et al. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev. Geophys. 53, 323–361 (2015).

  • 84.

    Volosciuk, C., Maraun, D., Vrac, M. & Widmann, M. A combined statistical bias correction and stochastic downscaling method for precipitation. Hydrol. Earth Syst. Sci. 21, 1693–1719 (2017).

  • 85.

    Walton, D. B., Sun, F., Hall, A. & Capps, S. A hybrid dynamical–statistical downscaling technique. part i: Development and validation of the technique. J. Clim. 28, 4597–4617 (2015).

  • 86.

    Maraun, D. et al. VALUE: a framework to validate downscaling approaches for climate change studies. Earth’s Future 3, 1–14 (2015).

  • 87.

    Prudhomme, C., Wilby, R. L., Crooks, S., Kay, A. L. & Reynard, N. S. Scenario-neutral approach to climate change impact studies: application to flood risk. J. Hydrol. 390, 198–209 (2010).

  • 88.

    Schär, C., Frei, C., Lüthi, D. & Davies, H. C. Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett. 23, 669–672 (1996).

  • 89.

    Hazeleger, W. et al. Tales of future weather. Nat. Clim. Change 5, 107–113 (2015).

  • 90.

    Klein Tank, A. M. G. et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 22, 1441–1453 (2002).

  • 91.

    Gutiérrez, J. M., Cano, R., Cofiño, A. S. & Sordo, C. Analysis and downscaling multi-model seasonal forecasts in Peru using self-organizing maps. Tellus A 57, 435–447 (2005).

  • 92.

    Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P. & Nijssen, B. A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States. J. Clim. 15, 3237–3251 (2002).

  • 93.

    van Vuuren, D. P. et al. The Representative Concentration Pathways: an overview. Climatic Change 109, 5–31 (2011).

  • http://feeds.nature.com/~r/nclimate/rss/current/~3/Nu2T0YCfUYk/nclimate3418