Brazilian sugarcane ethanol as an expandable green alternative to crude oil use

  • 1.

    De Souza, A. P., Grandis, A., Leite, D. C. C. & Buckeridge, M. S. Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. Bioenerg. Res. 7, 24–35 (2014).

  • 2.

    Somerville, C., Youngs, H., Taylor, C., Davis, S. C. & Long, S. P. Feedstocks for lignocellulosic biofuels. Science 329, 790–792 (2010).

  • 3.

    Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

  • 4.

    Mello, F. F. C. et al. Payback time for soil carbon and sugarcane ethanol. Nat. Clim. Change 4, 605–609 (2014).

  • 5.

    Sparovek, G., Barretto, A. G. O. P., Matsumoto, M. & Berndes, G. Effects of governance on availability of land for agriculture and conservation in Brazil. Environ. Sci. Technol. 49, 10285–10293 (2015).

  • 6.

    BP Statistical Review of World Energy (BP, 2015)https://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2016/bp-statistical-review-of-world-energy-2016-full-report.pdf

  • 7.

    Olivier, J. G. J., Janssens-Maenhout, G., Muntean, M. & Peters, J. A. H. W. Trends in Global CO2 Emission: 2015 Report, The Hague (PBL Netherlands Environmental Assessment Agency; Ispra: European Commission, Joint Research Centre, 2015).

  • 8.

    GeoSpacial Library – Agroecological Zoning (Brazilian Agricultural Research Corporation, 2015); http://geo.cnpma.embrapa.br/projeto_en.aspx

  • 9.

    Magrin, G. O. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Barros, V. R. et al.) 1499–1566 (IPCC, Cambridge Univ. Press, 2015).

  • 10.

    Ferreira-Leitão, V. et al. Biomass residues in Brazil: availability and potential uses. Waste Biomass Valorization 1, 65–76 (2010).

  • 11.

    Marin, F. R., Thorburn, P. J., Nassif, D. S. P. & Costa, L. G. Sugarcane model intercomparison: structural differences and uncertainties under current and potential future climates. Environ. Model. Softw. 72, 372–386 (2015).

  • 12.

    Marin, F. R., Ribeiro, R. V. & Marchiori, P. E. R. How can crop modeling and plant physiology help to understand the plant responses to climate change? A case study with sugarcane. Theor. Exp. Plant Physiol. 26, 49–63 (2014).

  • 13.

    Miguez, F. E., Zhu, X., Humphries, S., Bollero, G. A. & Long, S. P. A semimechanistic model predicting the growth and production of the bioenergy crop Miscanthus × giganteus: description, parameterization and validation. Glob. Change Biol. Bioenergy 1, 282–296 (2009).

  • 14.

    Cooper, M., Mendes, L. M. S., Silva, W. L. C. & Sparovek, G. A national soil profile database for Brazil available for international scientists. Soil Sci. Soc. Am. J. 69, 649–652 (2005).

  • 15.

    Sugarcane Production and Procesing per Harvesting (Brazilian sugarcane industry association (UNICA), 2005)http://www.unicadata.com.br/historico-de-producao-e-moagem.php?idMn=32&tipoHistorico=4

  • 16.

    Bodirsky, B. L. et al. Global food demand scenarios for the 21st century. PLoS ONE 10, e0139201 (2015).

  • 17.

    Nelson, G. C. et al. Climate change effects on agriculture: economic responses to biophysical shocks. Proc. Natl Acad. Sci. USA 111, 3274–3279 (2014).

  • 18.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

  • 19.

    Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

  • 20.

    Loiola, M. L. & Souza, F. Statistics on irrigation in Brazil according to the 1995–1996 agricultural census. Rev. Bras. Eng. Agr. Amb. 5, 171–180 (2001).

  • 21.

    Oliveira, M. E. D., Vaughan, B. E. & Rykiel, E. J. Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. BioScience 55, 593–602 (2005).

  • 22.

    Galdos, M., Cantarella, H., Hastings, A., Hillier, J. & Smith, P. Advances of Basic Science for Second Generation Bioethanol from Sugarcane (eds Buckeridge, M. S. & De Souza, A. P.) 177–195 (Springer, 2005).

  • 23.

    Watanabe, M. D. B. et al. Hybrid input-output life cycle assessment of first- and second-generation ethanol production technologies in Brazil. J. Ind. Ecol. 20, 764–774 (2016).

  • 24.

    Le Mer, J. & Roger, P. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37, 25–50 (2001).

  • 25.

    Otto, R. et al. Nitrogen use efficiency for sugarcane-biofuel production: what is next? Bioenerg. Res. 9, 1272–1289 (2016).

  • 26.

    Crutzen, P. J., Mosier, A. R., Smith, K. A. & Winiwarter, W. Paul J. Crutzen: A Pioneer on Atmospheric Chemistry and Climate Change in the Anthropocene (eds Crutzen, P. J. & Brauch, H. G.) 227–238 (Springer, 2016).

  • 27.

    Projections of Agribusinesses. Brazil 2013/14 to 2023/24. Long-Term Projections. Report No. MAPA/ACS, 1–98 (Ministry of Agriculture, Livestock and Food Supply, 2014).

  • 28.

    Electric Power Transmission and Distribution Losses (World Bank, 2016); http://data.worldbank.org/indicator/EG.ELC.LOSS.ZS

  • 29.

    Losordo, Z. et al. Cost competitive second-generation ethanol production from hemicellulose in a Brazilian sugarcane biorefinery. Biofuels Bioprod. Biorefin. 10, 589–602 (2016).

  • 30.

    Tao, L., Schell, D., Tan, E. C. & Elander, R. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover (National Renewable Energy Laboratory, 2016); http://www.nrel.gov/docs/fy14osti/61563.pdf

  • 31.

    Leahy, J. Brazilian ethanol producer sees boost from plant waste. Financial Times (2016); https://www.ft.com/content/366b86e4-5933-11e7-9bc8-8055f264aa8b

  • 32.

    Lee, H. Turning the focus to solutions. Science 350, 1007 (2015).

  • 33.

    Larsen, S., Jaiswal, D., Bentsen, N. S., Wang, D. & Long, S. P. Comparing predicted yield and yield stability of willow and miscanthus across Denmark. Glob. Change Biol. Bioenergy 8, 1061–1070 (2016).

  • 34.

    Miguez, F. E., Maughan, M., Bollero, G. A. & Long, S. P. Modeling spatial and dynamic variation in growth, yield, and yield stability of the bioenergy crops Miscanthus × giganteus and Panicum virgatum across the conterminous United States. Glob. Change Biol. Bioenergy 4, 509–520 (2012).

  • 35.

    Wang, D. et al. A physiological and biophysical model of coppice willow (Salix spp.) production yields for the contiguous USA in current and future climate scenarios. Plant Cell Env. 38, 1850–1865 (2015).

  • 36.

    Collatz, G., Ribas-Carbo, M. & Berry, J. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Funct. Plant Biol. 19, 519–538 (1992).

  • 37.

    Leakey, A. D. B. et al. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol. 140, 779–790 (2006).

  • 38.

    LeBauer, D. S. et al. BETYdb: a yield, trait, and ecosystem service database applied to second-generation bioenergy feedstock production. Glob. Change Biol. Bioenergy http://dx.doi.org/10.1111/gcbb.12420 (2017).

  • 39.

    University of São Paulo. Brazil Soil Database (accessed 27 March 2014); http://www.esalq.usp.br/gerd

  • 40.

    Reichert, J. M. et al. Estimation of water retention and availability in soils of Rio Grande do Sul. Rev. Bras. Cienc. Solo. 33, 1547–1560 (2009).

  • 41.

    Braga, R. L. C. Jr, Oliveira, I. A., Souza Andrade, F. & Nardy, V. Censo Varietal e de Produtividade em 2012 (CTC, 2009).

  • 42.

    Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction – the ISI-MIP approach. Earth Syst. Dynam. 4, 219–236 (2013).

  • 43.

    Nychka, D., Furrer, R., Paige, J., Sain, S. & Nychka, M. D. R Package ‘fields’ (2013); http://www.image.ucar.edu/fields

  • 44.

    ESRI 2011, ArcGIS Desktop. Release 10 (Environmental Systems Research Institute, 2013).

  • 45.

    Macedo, I. C., Leal, M. R. L. V. & Hassuani, S. J. Sugarcane residues for power generation in the sugar/ethanol mills in Brazil. Energy Sustain. Dev. 1, 77–82 (2001).

  • 46.

    Schogor, A. L. B. et al. Losses in sugarcane submitted to different harvesting methods. Revista Brasileira de Zootecnia 38, 1443–1450 (2009).

  • 47.

    Long, S. P. et al. Bioenergy and Sustainability: Bridging the Gaps (eds Souza, G. M., Victoria, R. L., Joly, C. A. & Verdade, L. M.) (SCOPE/72, 2015).

  • 48.

    Brazilian Institute of Geography and Statistics (IBGE) Table 1612 – Planted Area, Area Harvested, Quantity Produced, Average Yield and Production Value of Temporary Crops (2009); https://sidra.ibge.gov.br/Tabela/1612

  • 49.

    Brazilian Institute of Geography and Statistics (IBGE) Table 73 – Effective of Herds, by Type of Herd (Series Closed) (2009); https://sidra.ibge.gov.br/Tabela/73

  • 50.

    Brazilian Institute of Geography and Statistics (IBGE) Table 264 – Area of Agricultural Establishments by Land Use – Historical Series (1970/2006) (2009); https://sidra.ibge.gov.br/Tabela/264

  • 51.

    Brazilian Institute of Geography and Statistics (IBGE) Table 281 – Effective of Animals in Agricultural Establishments by Type of Herd – Historical Series (1970/2006) (2009); https://sidra.ibge.gov.br/Tabela/281

  • 52.

    De Souza, A. P. Photosynthetic mechanism and source-sink relationship in sugarcane grown in elevated CO2. PhD thesis, Univ. São Paulo (2011).

  • 53.

    Patzek, T. W. & Pimentel, D. Thermodynamics of energy production from biomass. Crit. Rev. Plant Sci. 24, 327–364 (2006).

  • 54.

    Pereira, S. C., Maehara, L., Machado, C. M. M. & Farinas, C. S. 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnol. Biofuels 8, 1–16 (2015).

  • 55.

    Preston, T. R. Nutritive value of sugarcane for ruminants. Trop. Anim. Prod. 2, 125–142 (1977).

  • 56.

    Annual Sugar Report (International Sugar Organization, 1977); http://www.isosugar.org

  • 57.

    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision (Food and Agriculture Organization of the United Nations, 1977).

  • 58.

    Vasconcelos, J. N., Lopes, C. E. & Franca, F. P. Continuous ethanol production using yeast immobilized on sugar-cane stalks. Braz. J. Chem. Eng. 21, 357–365 (2004).

  • 59.

    Miller, K. Solid–liquid separation technologies in the conversion of bagasse to liquid fuel. MS thesis, Louisiana State Univ. (2010).

  • 60.

    Dwivedi, P. et al. Cost of abating greenhouse gas emissions with cellulosic ethanol. Environ. Sci. Technol. 49, 2512–2522 (2015).

  • 61.

    Jaiswal, D. et al. Brazilian Sugarcane Ethanol as an expandable green alternative to crude oil use. Dryad Digital Repository http://dx.doi.org/10.5061/dryad.222j0.