Global variation in the cost of increasing ecosystem carbon

  • 1.

    Stern, N. The Economics of Climate Change: the Stern Review (Cambridge Univ. press, Cambridge, 2007).

  • 2.

    Lubowski, R. N. & Rose, S. K. The potential for REDD+: key economic modeling insights and issues. Rev. Env. Econ. Policy 7, 67–90 (2013).

  • 3.

    Fletcher, R., Dressler, W., Büscher, B. & Anderson, Z. R. Questioning REDD+ and the future of market‐based conservation. Conserv. Biol. 30, 673–675 (2016).

  • 4.

    Kremen, C. et al. Economic incentives for rain forest conservation across scales. Science 288, 1828–1832 (2000).

  • 5.

    Santilli, M. et al. Tropical deforestation and the Kyoto Protocol. Climatic Change 71, 267–276 (2005).

  • 6.

    Sills, E. O. et al. REDD+ on the Ground: A Case Book of Subnational Initiatives across the Globe (CIFOR, Bogor, 2014).

  • 7.

    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).

  • 8.

    Grieg-Gran, M. The Cost of Avoiding Deforestation: Update of the Report Prepared for the Stern Review of the Economics of Climate Change (International Institute for Enviroment and Development, London, 2008).

  • 9.

    Jack, B. K., Leimona, B. & Ferraro, P. J. A revealed preference approach to estimating supply curves for ecosystem services: use of auctions to set payments for soil erosion control in Indonesia. Conserv. Biol. 23, 359–367 (2009).

  • 10.

    Börner, J. et al. Direct conservation payments in the Brazilian Amazon: scope and equity implications. Ecol. Econ. 69, 1272–1282 (2010).

  • 11.

    Kindermann, G. et al. Global cost estimates of reducing carbon emissions through avoided deforestation. Proc. Natl Acad. Sci. USA 105, 10302–10307 (2008).

  • 12.

    Ickowitz, A., Sills, E. & de Sassi, C. estimating smallholder opportunity costs of REDD+: a pantropical analysis from households to carbon and back. World Dev. 95, 15–26 (2017).

  • 13.

    IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, Cambridge, 2014).

  • 14.

    Fisher, B. et al. Implementation and opportunity costs of reducing deforestation and forest degradation in Tanzania. Nat. Clim. Change 1, 161–164 (2011).

  • 15.

    Rose, S. K. et al. Land-based mitigation in climate stabilization. Energ. Econ. 34, 365–380 (2012).

  • 16.

    Larjavaara, M., Kanninen, M., Alam, S. A., Mäkinen, A. & Poeplau, C. CarboScen: a tool to estimate carbon implications of land-use scenarios. Ecography 7, 894–900 (2017).

  • 17.

    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).

  • 18.

    Huijnen, V. et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 26886 (2016).

  • 19.

    Beer, J. Advantages, disadvantages and desirable characteristics of shade trees for coffee, cacao and tea. Agroforest. Syst. 5, 3–13 (1987).

  • 20.

    Clough, Y. et al. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat. Commun. 7, 13137 (2016).

  • 21.

    World Governance Indicators (The World Bank Group, Washington DC, 2016).

  • 22.

    Myers, R., Sanders, A. J., Larson, A. M. & Ravikumar, A. Analyzing Multilevel Governance in Indonesia: Lessons for REDD+ from the Study of Landuse Change in Central and West Kalimantan Report No. 202 (CIFOR, Bogor, 2016).

  • 23.

    Sanders, A. J., da Silva Hyldmo, H., Ford, R. M., Larson, A. M. & Keenan, R. J. Guinea pig or pioneer: translating global environmental objectives through to local actions in Central Kalimantan, Indonesia’s REDD+ pilot province. Global Environ. Change 42, 68–81 (2017).

  • 24.

    Agricultural Policy Monitoring and Evaluation 2015: OECD Countries and Emerging Economies (OECD, Paris, 2013).

  • 25.

    Norman, M. & Nakhooda, S. The State of REDD+ Finance CGD Climate and Forest Paper Series No. 5 (Center for Global Development, Washington DC, 2014).

  • 26.

    Lamb, A. et al. The potential for land sparing to offset greenhouse gas emissions from agriculture. Nat. Clim. Change 6, 488–492 (2016).

  • 27.

    Ravikumar, A., Gonzales, J., Kowler, L. F. & Larson, A. M. Building Future Scenarios: Governance, Land Use and Carbon Management at the Landscape Scale (CIFOR, Bogor, 2014).

  • 28.

    Ravikumar, A., Larjavaara, M., Larson, A. & Kanninen, M. Can conservation funding be left to carbon finance? Evidence from participatory future land use scenarios in Peru, Indonesia, Tanzania, and Mexico. Environ. Res. Lett. 12, 014015 (2017).

  • 29.

    Poeplau, C. et al. Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Global Change Biol. 17, 2415–2427 (2011).

  • 30.

    Wei, X., Shao, M., Gale, W. & Li, L. Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Sci. Rep. 4, 4062 (2014).

  • 31.

    Anderson-Teixeira, K. J., Wang, M. M. H., McGarvey, J. C. & LeBauer, D. S. Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). Global Change Biol. 22, 1690–1709 (2016).

  • 32.

    Guidelines for National Greenhouse Gas Inventories (IPCC, Geneva, 2006).

  • 33.

    Linstone, H. A. & Turoff, M. The Delphi Method: Techniques and Applications Vol. 29 (Addison-Wesley, Reading, 1975). 

  • 34.

    Nordhaus, W. D. Discounting in economics and climate change; an editorial comment. Climatic Change 37, 315–328 (1997).

  • 35.

    Hillis, D. M. & Bull, J. J. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42, 182–192 (1993).

  • 36.

    R Development-Core-Team. R: A Language and environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2008).

  • 37.

    Sohngen, B. & Mendelsohn, R. An optimal control model of forest carbon sequestration. Am. J. Agr. Econ. 85, 448–457 (2003).