Higher climatological temperature sensitivity of soil carbon in cold than warm climates

Source: Nature.com

  • 1.

    Arora, V. K. et al. Carbon-concentration and carbon–climate feedbacks in CMIP5 Earth System Models. J. Clim. 26, 5289–5314 (2013).

  • 2.

    Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 465–570 (IPCC, Cambridge Univ. Press, 2013).

  • 3.

    Koven, C. D. et al. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models. Biogeosciences 12, 5211–5228 (2015).

  • 4.

    Carvalhais, N. et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217 (2014).

  • 5.

    Ciais, P. et al. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nat. Geosci. 5, 74–79 (2012).

  • 6.

    Koven, C. D. et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).

  • 7.

    Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).

  • 8.

    Davidson, E. & Janssens, I. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

  • 9.

    Jenkinson, D., Adams, D. & Wild, A. Model estimates Of CO2 emissions from soil in response to global warming. Nature 351, 304–306 (1991).

  • 10.

    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

  • 11.

    Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3, 909–912 (2013).

  • 12.

    Tang, J. & Riley, W. J. Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions. Nat. Clim. Change 5, 56–60 (2015).

  • 13.

    Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).

  • 14.

    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

  • 15.

    Jones, C. et al. Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under four Representative Concentration Pathways. J. Clim. 26, 4398–4413 (2013).

  • 16.

    Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).

  • 17.

    Todd-Brown, K. E. O. et al. Causes of variation in soil carbon simulations from CMIP5 Earth System Models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).

  • 18.

    He, Y. et al. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science 353, 1419–1424 (2016).

  • 19.

    Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

  • 20.

    Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology (Courier Corporation, 2016).

  • 21.

    Post, W. M., Emanuel, W. R., Zinke, P. J. & Stangenberger, A. G. Soil carbon pools and world life zones. Nature 298, 156–159 (1982).

  • 22.

    Raich, J. W. & Schlesinger, W. H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44, 81–99 (1992).

  • 23.

    Doetterl, S. et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 8, 780–783 (2015).

  • 24.

    Giardina, C. P. & Ryan, M. G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404, 858–861 (2000).

  • 25.

    Lloyd, J. & Taylor, J. On the temperature-dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).

  • 26.

    Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39, L15704 (2012).

  • 27.

    Koven, C. D. et al. The effect of vertically-resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences 10, 7109–7131 (2013).

  • 28.

    Koven, C. D., Lawrence, D. M. & Riley, W. J. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl Acad. Sci. USA 112, 3752–3757 (2015).

  • 29.

    Wang, Y. P. et al. Responses of two nonlinear microbial models to warming and increased carbon input. Biogeosciences 13, 887–902 (2016).

  • 30.

    Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).

  • 31.

    FAO, IIASA, ISRIC, ISSCAS & JRC Harmonized World Soil Database (version 1.2) (FAO and IIASA, 2012).

  • 32.

    Hugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).

  • 33.

    Zhao, M., Heinsch, F., Nemani, R. & Running, S. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176 (2005).

  • 34.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

  • 35.

    Schneider, U. et al. GPCC Full Data Reanalysis Version 6.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data. (2011); http://doi.org/10.5676/DWD_GPCC/FD_M_V6_050

  • 36.

    Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).

  • 37.

    Slater, A. et al. The representation of snow in land surface schemes: results from PILPS 2(d). J. Hydrometeorol. 2, 7–25 (2001).

  • 38.

    Slater, A. G., Lawrence, D. M. & Koven, C. D. Process-level model evaluation: a snow and heat transfer metric. Cryosphere Discuss. 2016, 1–16 (2016).

  • 39.

    Oleson, K. W. et al. Technical Description of version 4.0 of the Community Land Model (CLM) (National Center for Atmospheric Research, 2016).

  • 40.

    Raddatz, T. J. et al. Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim. Dynam. 29, 565–574 (2007).

  • 41.

    Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).

  • 42.

    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).

  • 43.

    Milly, P. C. D. et al. An enhanced model of land water and energy for global hydrologic and earth-system studies. J. Hydrometeorol. 15, 1739–1761 (2014).

  • 44.

    Slater, A. G. & Lawrence, D. M. Diagnosing present and future permafrost from climate models. J. Clim. 26, 5608–5623 (2013).

  • 45.

    Koven, C. D., Riley, W. J. & Stern, A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J. Clim. 26, 1877–1900 (2012).

  • 46.

    Sato, H., Itoh, A. & Kohyama, T. SEIB–DGVM: a new Dynamic Global Vegetation Model using a spatially explicit individual-based approach. Ecol. Model. 200, 279–307 (2007).

  • http://feeds.nature.com/~r/nclimate/rss/current/~3/N1_aU6QMwOo/nclimate3421