Increasing frequency of extremely severe cyclonic storms over the Arabian Sea

  • 1.

    Tropical Cyclone Operational Plan for the Bay of Bengal and Arabian Sea WMO/TD-84 (WMO, 2015); www.wmo.int/pages/prog/www/tcp/documents/TCP-21Edition2015_final.pdf

  • 2.

    Kruk, M. C. Tropical cyclones, North Indian Ocean. Bull. Amer. Meteorol. Soc. 97(8) (Suppl.), 114–115 (2016).

  • 3.

    Evan, A. T., Kossin, J. P., Chung, C. E. & Ramanathan, V. Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols. Nature 479, 94–97 (2011).

  • 4.

    Wang, B., Xu, S. & Wu, L. Intensified Arabian Sea tropical storms. Nature 489, E1–E2 (2012).

  • 5.

    Evan, A. T. & Camargo, S. J. A climatology of Arabian Sea cyclonic storms. J. Clim. 24, 140–158 (2011).

  • 6.

    Kossin, J. P., Olander, T. L. & Knapp, K. R. Trend analysis with a new global record of tropical cyclone intensity. J. Clim. 26, 9960–9976 (2013).

  • 7.

    Knutson, T. et al. Tropical cyclones and climate change. Nat. Geosci. 3, 157–163 (2010).

  • 8.

    Murakami, H. et al. Simulation and prediction of Category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Clim. 28, 9058–9079 (2015).

  • 9.

    LaRow, T. E., Lim, Y.-K., Shin, D. W., Chassignet, E. P. & Cocke, S. Atlantic basin seasonal hurricane simulations. J. Clim. 21, 3191–3206 (2008).

  • 10.

    Zhao, M., Held, I. M., Lin, S.-J. & Vecchi, G. A. Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50km resolution GCM. J. Clim. 22, 333–363 (2009).

  • 11.

    Manganello, J. V. et al. Tropical cyclone climatology in a 10-km global atmospheric GCM: toward weather-resolving climate modeling. J. Clim. 24, 3867–3893 (2012).

  • 12.

    Murakami, H., Sugi, M. & Kitoh, A. Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs. Clim. Dyn. 40, 1949–1968 (2013).

  • 13.

    Murakami, H. et al. Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Clim. 25, 3237–3260 (2012).

  • 14.

    IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, Cambridge, 2007).

  • 15.

    Murakami, H. et al. Seasonal forecasts of major hurricanes and landfalling tropical cyclones using a high-resolution GFDL coupled climate model. J. Clim. 29, 7977–7989 (2016).

  • 16.

    Murakami, H. et al. Investigating the influence of anthropogenic forcing and natural variability on the 2014 Hawaiian hurricane season. Bull. Amer. Meteorol. Soc. 97(12) (Suppl.), 115–119 (2016).

  • 17.

    Murakami, H. et al. Dominant role of subtropical Pacific warming in extreme eastern Pacific hurricane seasons: 2015 and the future. J. Clim. 30, 243–264 (2017).

  • 18.

    Vecchi, G. A. & Soden, B. J. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450, 1066–1071 (2007).

  • 19.

    Vecchi, G. A. & Soden, B. J. Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett. 34, L08702 (2007).

  • 20.

    Sugi, M., Murakami, H. & Yoshimura, J. A reduction in global tropical cyclone frequency due to global warming. SOLA 5, 164–167 (2009).

  • 21.

    Murakami, H., Mizuta, R. & Shindo, E. Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Clim. Dyn. 39, 2569–2584 (2012).

  • 22.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Amer. Meteorol. Soc. 93, 485–498 (2012).

  • 23.

    IPCC Climate Change 2013. The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, Cambridge, 2013).

  • 24.

    Murakami, H., Wang, B., Li, T. & Kitoh, A. Projected increase in tropical cyclones near Hawaii. Nat. Clim. Change 3, 749–754 (2013).

  • 25.

    Chu, J.-H., C. R. Sampson, Levin, A. S. & Fukada, E. The Joint Typhoon Warning Center Tropical Cyclone Best Tracks 1945–2000 NRL; https://www.gfdl.noaa.gov/cm2-5-and-flor/

  • 26.

    Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J. & Neuman, C. J. The international best track archive for climate stewardship (IBTrACS): unifying tropical cyclone best track data. Bull. Amer. Meteorol. Soc. 91, 363–376 (2010).

  • 27.

    Unisys Weather Hurricane/Tropical Data (UNISYS, 2017); http://weather.unisys.com/hurricane/

  • 28.

    Rayner, N. A. et al. Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

  • 29.

    Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn 93, 5–48 (2015).

  • 30.

    Jaeger, C. C., Krause, J., Haas, A., Klein, R. & Hasselmann, K. A method for computing the fraction of attributable risk related to climate damages. Risk Anal. 28, 815–823 (2008).

  • 31.

    Chiang, J. C. H. & Vimont, D. J. Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Clim. 17, 4143–4158 (2004).

  • 32.

    Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteorol. Soc. 78, 1069–1079 (1997).

  • 33.

    Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

  • 34.

    Wang, B. & Fan, Z. Choice of south Asian summer monsoon indices. Bull. Amer. Meteorol. Soc. 80, 629–638 (1999).