Keeping global warming within 1.5 °C constrains emergence of aridification

  • 1.

    Collins, M. et al. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (IPCC, Cambridge Univ. Press, Cambridge, UK, 2013).

  • 2.

    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion underclimate change. Nat. Clim. Change 6, 166–171 (2016).

  • 3.

    Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).

  • 4.

    Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).

  • 5.

    Lin, L., Gettelman, A., Fu, Q. & Xu, Y. Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols. Climatic Change https://doi.org/10.1007/s10584-016-1615-3 (2016).

  • 6.

    Fu, Q., Lin, L., Huang, J., Feng, S. & Gettelman, A. Changes in terrestrial aridity for the period 850–2080 from the Community Earth System Model. J. Geophys. Res. Atmos. 121, 2857–2873 (2016).

  • 7.

    Mahlstein, I., Knutti, R., Solomon, S. & Portmann, R. W. Early onset of significant local warming in low latitude countries. Environ. Res. Lett. 6, 034009 (2011).

  • 8.

    Hawkins, E. & Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 37, 407–418 (2011).

  • 9.

    Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).

  • 10.

    King, A. D. et al. The timing of anthropogenic emergence in simulated climate extremes. Environ. Res. Lett. 10, 094015 (2015).

  • 11.

    Middleton, N. et al. World Atlas of Desertification. 2nd edn (Arnold, London, 1997).

  • 12.

    Mosley, L. M. Drought impacts on the water quality of freshwater systems; review and integration. Earth Sci. Rev. 140, 203–214 (2015).

  • 13.

    Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).

  • 14.

    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).

  • 15.

    Webber, H. et al. Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe. Environ. Res. Lett. 11, 074007 (2016).

  • 16.

    Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).

  • 17.

    Sedláček, J. & Knutti, R. Half of the world’s population experience robust changes in the water cycle for a 2 °C warmer world. Environ. Res. Lett. 9, 044008 (2014).

  • 18.

    Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2012).

  • 19.

    Gonzalez, P., Neilson, R. P., Lenihan, J. M. & Drapek, R. J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 19, 755–768 (2010).

  • 20.

    D’Odorico, P., Bhattachan, A., Davis, K. F., Ravi, S. & Runyan, C. W. Global desertification: drivers and feedbacks. Adv. Water Resour. 51, 326–344 (2013).

  • 21.

    Vicente-Serrano, S. M. et al. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 9, 044001 (2014).

  • 22.

    Joshi, M., Hawkins, E., Sutton, R., Lowe, J. & Frame, D. Projections of when temperature change will exceed 2 °C above pre-industrial levels. Nat. Clim. Change 1, 407–412 (2011).

  • 23.

    Park, C.-E., Jeong, S.-J., Ho, C.-H. & Kim, J. Regional variations in potential plant habitat changes in response to multiple global warming scenarios. J. Clim. 28, 2884–2899 (2015).

  • 24.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

  • 25.

    Barbeta, A. et al. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Glob. Change Biol. 21, 1213–1225 (2015).

  • 26.

    Schleussner, C.-F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 6, 827–835 (2016).

  • 27.

    Hawkins, E. et al. Estimating changes in global temperature since the preindustrial period. Bull. Am. Meteorol. Soc. 98, 1841–1856 (2017).

  • 28.

    Caesar, J. et al. Response of the HadGEM2 earth system model to future greenhouse gas emissions pathways to the year 2300. J. Clim. 26, 3275–3284 (2013).

  • 29.

    Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).

  • 30.

    Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

  • 31.

    Chen, M., Xie, P., Janowiak, J. E. & Arkin, P. A. Global land precipitation: a 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).

  • 32.

    Fan, Y. & van den Dool, H. A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res. 113, D01103 (2008).

  • 33.

    Allen, R. G. Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration–Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56 (FAO, 1998).

  • 34.

    Mastrandrea, M. D. et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties (Intergovernmental Panel on Climate Change, 2010).

  • 35.

    Murakami, D. & Yamagata, Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. Preprint at https://arxiv.org/abs/1610.09041 (2016).