Quantifying the economic risks of climate change

Source: Nature.com

  • 1.

    Interagency Working Group on Social Cost of Carbon. Technical Support Document: Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866 1–50 (United States Government, Washington DC, 2010).

  • 2.

    Rose, S. K., Diaz, D. B. & Blanford, G. J. Understanding the social cost of carbon: a model diagnostic and inter-comparison study. Clim. Chang. Econ. 8, 1750009 (2017). An in-depth examination of the DICE, FUND and PAGE integrated assessment models used by the US Government to estimate the social cost of carbon with detailed decomposition and comparison of intermediate results.

  • 3.

    Revesz, R. et al. Improve economic models of climate change. Nature 508, 173–175 (2014).

  • 4.

    Burke, M. et al. Opportunities for advances in climate change economics. Science 352, 292–293 (2016).

  • 5.

    Stern, N. The structure of economic modeling of the potential impacts of climate change: grafting gross underestimation of risk onto already narrow science models. J. Econ. Lit. 51, 838–859 (2013).

  • 6.

    National Academies of Sciences, Engineering, and Medicine. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide (National Academies Press, 2017). Comprehensive report examining potential approaches for updating the methodology for estimating the social cost of carbon dioxide for US regulatory analysis.

  • 7.

    Nordhaus, W. RICE-2010 and DICE-2010 Models (last accessed 2012 03 20); http://www.econ.yale.edu/nordhaus/homepage/RICEmodels.htm

  • 8.

    Anthoff, D. & Tol, R. S. J. FUND v.3.8 Scientific Documentation (2014); http://www.fund-model.org/versions

  • 9.

    Hope, C. W. The PAGE09 Integrated Assessment Model: A Technical Description. Working Paper (Cambridge Judge Business School, 2011).

  • 10.

    Ackerman, F. & Munitz, C. Climate damages in the FUND model: a disaggregated analysis. Ecol. Econ. 77, 219–224 (2012).

  • 11.

    Tol, R. S. J. Estimates of the damage costs of climate change, Part II. Dynamic estimates. Environ. Resour. Econ. 21, 135–160 (2002). A methodology for modeling dynamic factors such as socioeconomic levels affecting vulnerability for eight major climate impact categories.

  • 12.

    Anthoff, D. & Tol, R. S. J. in Climate Change and Common Sense: Essays in Honour of Tom Schelling, 260–273 (Oxford Univ. Press, 2012).

  • 13.

    Nordhaus, W. D. Economic aspects of global warming in a post-Copenhagen environment. Proc. Natl Acad. Sci. USA 107, 11721–11726 (2010).

  • 14.

    Weyant, J. Some contributions of integrated assessment models of global climate change. Rev. Environ. Econ. Policy 11, 115–137 (2017). Comprehensive overview of the use of IAMs in global policy analysis, discussing challenges and open issues.

  • 15.

    Calvin, K. et al. GCAM Wiki documentation (Pacific Northwest National Laboratory, 2011); http://jgcri.github.io/gcam-doc/

  • 16.

    Sokolov, A., Schlosser, C., Dutkiewicz, S. & Paltsev, S. MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation (2005); https://dspace.mit.edu/handle/1721.1/29789

  • 17.

    Stehfest, E., Vuuren, D. van, Bouwman, L. & Kram, T. Integrated Assessment of Global Environmental Change with Image 3.0: Model Description and Policy Applications (2014); http://dspace.library.uu.nl/handle/1874/308545

  • 18.

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

  • 19.

    O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 387–400 (2014).

  • 20.

    Calvin, K., Wise, M., Clarke, L., Edmonds, J. & Kyle, P. Implications of simultaneously mitigating and adapting to climate change: initial experiments using GCAM. Climatic Change 117, 545–560 (2013).

  • 21.

    Kyle, P., Müller, C., Calvin, K. & Thomson, A. Meeting the radiative forcing targets of the representative concentration pathways in a world with agricultural climate impacts. Earth’s Future 2, http://dx.doi.org/10.1002/2013EF000199 (2014).

  • 22.

    Zhou, Y., Eom, J. & Clarke, L. The effect of global climate change, population distribution, and climate mitigation on building energy use in the US and China. Climatic Change 119, 979–992 (2013).

  • 23.

    Hejazi, M. I. et al. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies. Hydrol. Earth Syst. Sci. 18, 2859–2883 (2014).

  • 24.

    Blanc, E. et al. Modeling U. S. water resources under climate change. Earth’s Future 2, 197–224 (2014).

  • 25.

    Huber, V. et al. Climate impact research: beyond patchwork. Earth Syst. Dyn. 5, 399–408 (2014).

  • 26.

    Waldhoff, S. T. et al. Overview of the special issue: a multi-model framework to achieve consistent evaluation of climate change impacts in the United States. Climatic Change 131, 1–20 (2015).

  • 27.

    O’Neill, B. C. et al. The Benefits of Reduced Anthropogenic Climate changE (BRACE): a synthesis. Climatic Change https://doi.org/10.1007/s10584-017-2009-x (2017).

  • 28.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

  • 29.

    Knutti, R., Furrer, R., Tebaldi, C., Cermak, J. & Meehl, G. A. Challenges in combining projections from multiple climate models. J. Clim. 23, 2739–2758 (2010).

  • 30.

    Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014). Example of recent multisector coordinated modeling initiative using standardized scenarios and input assumptions.

  • 31.

    Roson, R. & Sartori, M. Estimation of Climate Change Damage Functions for 140 Regions in the GTAP9 Database (World Bank, 2016).

  • 32.

    Greenstone, M., Houser, T., Hsiang, S. M. & Kopp, R. E. Climate Impact Lab; http://www.impactlab.org/

  • 33.

    Arnell, N. W. et al. The Impacts of Climate Change Avoided by Future Reductions in Emissions as Defined in the Intended Nationally-Determined Contributions (AVOID 2, UK Government, 2015).

  • 34.

    Houser, T., Hsiang, S., Kopp, R. & Larsen, K. Economic Risks of Climate Change: An American Prospectus (Columbia Univ. Press, 2015).

  • 35.

    Ciscar, J.-C. et al. Climate Impacts in Europe — The JRC PESETA II Project, Vol. 26586 (Publications Office of the European Union, 2014).

  • 36.

    Bosello, F., Eboli, F. & Pierfederici, R. Assessing the economic impacts of climate change — an updated CGE point of view. SSRN Electron. J. http://dx.doi.org/10.2139/ssrn.2004966 (2012).

  • 37.

    Moore, F. C., Baldos, U., Hertel, T. W. & Diaz, D. B. New science of climate change impacts on agriculture implies higher social cost of carbon. Nat. Commun. (in the press); https://doi.org/10.1038/s41467-017-01792-x

  • 38.

    Carleton, T. & Hsiang, S. Social and economic impacts of climate change. Science 353, aad9837 (2016).

  • 39.

    Dell, M., Jones, B. F. & Olken, B. A. What do we learn from the weather? The new climate-economy literature. J. Econ. Lit. 53, 740–798 (2014). Comprehensive review of the growing empirical literature on weather effects using panel data, with implications for economic research.

  • 40.

    Hsiang, S. M., Burke, M. & Miguel, E. Quantifying the influence of climate on human conflict. Science 341, 1235367 (2013).

  • 41.

    Fishman, R., Russ, J. & Carrillo, P. Long-Term Impacts of High Temperatures on Economic Productivity (2015); https://ideas.repec.org/p/gwi/wpaper/2015-18.html

  • 42.

    Seppanen, O., Fisk, W. J. & Lei, Q. Effect of Temperature on Task Performance in Office Environments (LBNL, 2006).

  • 43.

    Obradovich, N. Climate change may speed democratic turnover. Climatic Change 140, 135–147 (2017).

  • 44.

    Mendelsohn, R., Nordhaus, W. D. & Shaw, D. The impact of global warming on agriculture: a Ricardian analysis. Am. Econ. Rev. 84, 753–771 (1994).

  • 45.

    Schlenker, W. & Roberts, D. L. Nonlinear temperature effects indicate severe damages to US corn yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

  • 46.

    Tack, J., Barkley, A. & Nalley, L. L. Effect of warming temperatures on US wheat yields. Proc. Natl Acad. Sci. USA 112, 6931–6936 (2015).

  • 47.

    Lobell, D. B., Banziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).

  • 48.

    Auffhammer, Maximilian and Anin Aroonruengsawat. Hotspots of Climate-Driven Increases in Residential Electricity Demand: A Simulation Exercise Based on Household Level Billing Data for California. Publication number: CEC-500-2012-021 (California Climate Change Center, California Energy Commission, 2012).

  • 49.

    Davis, L. W. & Gertler, P. J. Contribution of air conditioning adoption to future energy use under global warming. Proc. Natl Acad. Sci. USA 112, 5962–5927 (2015).

  • 50.

    Deschênes, O. & Greenstone, M. Climate change, mortality, and adaptation: evidence from annual fluctuations in weather in the US. Am. Econ. J. Appl. Econ. 3, 152–185 (2011).

  • 51.

    Barreca, A., Clay, K., Deschenes, O., Greenstone, M. & Shapiro, J. S. Adapting to climate change: the remarkable decline in the US temperature–mortality relationship over the 20th century. J. Polit. Econ. 124, 105–159 (2013).

  • 52.

    Barreca, A. Climate change, humidity, and mortality in the United States. J. Environ. Econ. Manage. 63, 19–34 (2012).

  • 53.

    Deschênes, O., Greenstone, M. & Guryan, J. Climate change and birth weight. Am. Econ. Rev. Pap. Proc. 99, 211–217 (2009).

  • 54.

    Heal, G. & Park, J. Feeling the Heat: Temperature, Physiology & the Wealth of Nations (2013); http://www.nber.org/papers/w19725

  • 55.

    Graff Zivin, J. & Neidell, M. Temperature and the allocation of time: implications for climate change. J. Labor Econ. 32, 1–26 (2014).

  • 56.

    Ranson, M. Crime, weather, and climate change. J. Environ. Econ. Manage. 67, 274–302 (2014).

  • 57.

    Hsiang, S. et al. Estimating economic damage from climate change in the United States. Science 356, 1362–1369 (2017). Recent multisector assessment of US climate damages at high spatial resolution of both physical and economic impacts, with a focus on empirical support for sectoral damage functions.

  • 58.

    Hsiang, S. Climate econometrics. Ann. Rev. Res. Econ. 8, 43–75 (2016).

  • 59.

    Deschênes, O. & Greenstone, M. The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather. Am. Econ. Rev. 97, 354–385 (2007).

  • 60.

    Lemoine, D. & Kapnick, S. A top-down approach to projecting market impacts of climate change. Nat. Clim. Change 6, 51–55 (2016).

  • 61.

    Dell, M., Jones, B. F. & Olken, B. A. Temperature shocks and economic growth: evidence from the last half century. Am. Econ. J. Macroecon. 4, 66–95 (2012).

  • 62.

    Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).

  • 63.

    Moore, F. C. & Diaz, D. B. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Change 5, 127–131 (2015).

  • 64.

    IPCC: Summary for Policymakers. In Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) (Cambridge Univ. Press, 2007).

  • 65.

    Tol, R. S. J. The economic effects of climate change. J. Econ. Perspect. 23, 29–51 (2009).

  • 66.

    Anthoff, D., Nicholls, R. J., Tol, R. S. J. & Vafeidis, A. T. Global and Regional Exposure to Large Rises in Sea-Level: A Sensitivity Analysis (2006); http://www.tyndall.ac.uk/sites/default/files/wp96_0.pdf

  • 67.

    Warren, R. et al. Spotlighting Impacts Functions in Integrated Assessment (Tyndall Centre for Climate Change Research, 2006).

  • 68.

    Nordhaus, W. D. Expert opinion on climatic change. Am. Sci. 82, 45–51 (1994).

  • 69.

    Ackerman, F., Stanton, E. A., Hope, C. W. & Alberth, S. Did the Stern Review underestimate US and global climate damages? Energy Policy 37, 2717–2721 (2009).

  • 70.

    Weitzman, M. L. GHG targets as insurance against catastrophic climate damages. J. Public Econ. Theory 14, 221–244 (2012). Describes how fat-tailed climate risks affect the cost–benefit analysis of climate change, highlighting limitations in the treatment of: uncertainty, risk, discounting and welfare (in the face of catastrophic outcomes).

  • 71.

    Dietz, S. & Stern, N. Endogenous growth, convexity of damage and climate risk: how Nordhaus’ framework supports deep cuts in carbon emissions. Econ. J. 125, 574–620 (2015).

  • 72.

    Ackerman, F. & Stanton, E. A. Climate risks and carbon prices: revising the social cost of carbon. Economics 6, 1–25 (2012).

  • 73.

    van den Bergh, J. C. J. M. & Botzen, W. J. W. A lower bound to the social cost of CO2 emissions. Nat. Clim. Change 4, 253–258 (2014).

  • 74.

    Nordhaus, W. D. To slow or not to slow: the economics of the greenhouse effect. Econ. J. 101, 920–937 (1991).

  • 75.

    Warren, R. The role of interactions in a world implementing adaptation and mitigation solutions to climate change. Phil. Trans. R. Soc. A 369, 217–41 (2011).

  • 76.

    Marten, A. L. et al. Improving the assessment and valuation of climate change impacts for policy and regulatory analysis. Climatic Change 117, 433–438 (2013).

  • 77.

    Watkiss, P. Aggregate economic measures of climate change damages: explaining the differences and implications. Wiley Interdiscip. Rev. Clim. Change 2, 356–372 (2011).

  • 78.

    Howard, P. Omitted Damages: What’s Missing from the Social Cost of Carbon. (2014); http://go.nature.com/2wKYTcF

  • 79.

    Watkiss, P. & Downing, T. E. The social cost of carbon: valuation estimates and their use in UK policy. Integr. Assess. J. Bridg. Sci. Policy 8, 85–105 (2008).

  • 80.

    Neumann, J. E. & Strzepek, K. State of the literature on the economic impacts of climate change in the United States. J. Benefit Cost Anal. 5, 411–443 (2014).

  • 81.

    Kopp, R. E. & Mignone, B. B. K. The US government’s social cost of carbon estimates after their first two years: pathways for improvement. Economics E-Journal 6, 1–41 (2012).

  • 82.

    Bell, A., Zhu, T., Xie, H. & Ringler, C. Climate–water interactions: challenges for improved representation in integrated assessment models. Energy Econ. 46, 510–521 (2014).

  • 83.

    Li, J., Mullan, M. & Helgeson, J. Improving the practice of economic analysis of climate change adaptation. J. Benefit Cost Anal. 5, 445–467 (2014).

  • 84.

    de Bruin, K. C., Dellink, R. B. & Tol, R. S. J. AD-DICE: an implementation of adaptation in the DICE model. Climatic Change 95, 63–81 (2009).

  • 85.

    Farmer, J. D., Hepburn, C., Mealy, P. & Teytelboym, A. A third wave in the economics of climate change. Environ. Resour. Econ. 62, 329–357 (2015).

  • 86.

    Kelly, D., Kolstad, C. & Mitchell, G. Adjustment costs from environmental change. J. Environ. Econ. Manage. 50, 468–495 (2005). Conceptual framework for understanding adjustment costs and equilibrium response, with an empirical application for US agriculture.

  • 87.

    Schneider, S. H., Easterling, W. E. & Mearns, L. O. Adaptation: sensitivity to natural variability, agent assumptions and dynamic climate changes. Climatic Change 45, 203–221 (2000).

  • 88.

    Hornbeck, R. The enduring impact of the American Dust Bowl: short and long-run adjustments to environmental catastrophe. Am. Econ. Rev. 102, 1477–1507 (2012).

  • 89.

    Heal, G. & Millner, A. Reflections: uncertainty and decision making in climate change economics. Rev. Environ. Econ. Policy 8, 120–137 (2014).

  • 90.

    Cai, Y., Judd, K. L., Lenton, T. M., Lontzek, T. S. & Narita, D. Environmental tipping points significantly affect the cost-benefit assessment of climate policies. Proc. Natl Acad. Sci. USA 112, 4606–4611 (2015). Example of recent advances using stochastic dynamic programming to model uncertain climate thresholds with an endogenous hazard rate and incorporate catastrophic uncertainty into IAMs.

  • 91.

    Lemoine, D. & Traeger, C. Watch your step: optimal policy in a tipping climate. Am. Econ. J. Econ. Policy 6, 137–166 (2014).

  • 92.

    Diaz, D. B. & Keller, K. A potential disintegration of the West Antarctic Ice Sheet: implications for economic analyses of climate policy. Am. Econ. Rev. Pap. Proc. 106, 1–5 (2016).

  • 93.

    Kopp, R. E., Shwom, R. L., Wagner, G. & Yuan, J. Tipping elements and climate–economic shocks: Pathways toward integrated assessment. Earth’s Future 4, 346–372 (2016).

  • 94.

    Moyer, E., Woolley, M., Glotter, M. & Weisbach, D. Climate impacts on economic growth as drivers of uncertainty in the social cost of carbon. J. Legal Stud. 43, 401–425 (2014).

  • 95.

    Pindyck, R. S. Climate change policy: what do the models tell us? J. Econ. Lit. 51, 860–872 (2013).

  • 96.

    Sterner, T. & Persson, U. M. An even sterner review: introducing relative prices into the discounting debate. Rev. Environ. Econ. Policy 2, 61–76 (2008).

  • 97.

    Weitzman, M. L. On modelling and interpreting the economics of catastrophic climate change. Rev. Econ. Stat. 91, 1–19 (2009).

  • 98.

    Weitzman, M. L. What is the ‘damages function’ for global warming — and what difference might it make? Clim. Chang. Econ. 1, 57–69 (2012).

  • 99.

    Anthoff, D., Tol, R. S. J. & Yohe, G. W. Risk aversion, time preference, and the social cost of carbon. Environ. Res. Lett. 4, 24002 (2009).

  • 100.

    Anthoff, D., Hepburn, C. & Tol, R. S. J. Equity weighting and the marginal damage costs of climate change. Ecol. Econ. 68, 836–849 (2009).

  • 101.

    Dennig, F., Budolfson, M. B., Fleurbaey, M., Siebert, A. & Socolow, R. H. Inequality, climate impacts on the future poor, and carbon prices. Proc. Natl Acad. Sci. USA 112, 1513967112 (2015).

  • 102.

    Newbold, S. C. & Daigneault, A. Climate response uncertainty and the benefits of greenhouse gas emissions reductions. Environ. Resour. Econ. 44, 351–377 (2009).

  • 103.

    Crost, B. & Traeger, C. P. Optimal CO2 mitigation under damage risk valuation. Nat. Clim. Change 4, 631–636 (2014).

  • 104.

    Jensen, S. & Traeger, C. P. Optimal climate change mitigation under long-term growth uncertainty: stochastic integrated assessment and analytic findings. Eur. Econ. Rev. 69, 104–125 (2014).

  • 105.

    Daniel, K. D., Litterman, R. B. & Wagner, G. Applying Asset Pricing Theory to Calibrate the Price of Climate Risk (2015); http://go.nature.com/2xw8SSL

  • http://feeds.nature.com/~r/nclimate/rss/current/~3/HDGLz_cBP3k/nclimate3411