Reduced feeding activity of soil detritivores under warmer and drier conditions

  • 1.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

  • 2.

    Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).

  • 3.

    Crowther, T. et al. Quantifying global soil C losses in response to warming. Nature 540, 104–108 (2016).

  • 4.

    Adl, S. The Ecology of Soil Decomposition (CABI Publishing, Trowbridge, 2003).

  • 5.

    Wolters, V. Invertebrate control of soil organic matter stability. Biol. Fertil. Soils 31, 1–19 (2000).

  • 6.

    Prescott, C. E. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101, 133–149 (2010).

  • 7.

    Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).

  • 8.

    Jastrow, J. D., Amonette, J. E. & Bailey, V. L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim. Change 80, 5–23 (2007).

  • 9.

    Verhoef, H. & Brussaard, L. Decomposition and nitrogen mineralization in natural and agroecosystems: the contribution of soil animals. Biogeochemistry 11, 175–211 (1990).

  • 10.

    Seastedt, T. The role of microarthropods in decomposition and mineralization processes. Annu. Rev. Entomol. 29, 25–46 (1984).

  • 11.

    Pries, C. E. H., Castanha, C., Porras, R. & Torn, M. S. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).

  • 12.

    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

  • 13.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

  • 14.

    Tucker, C. L., Bell, J., Pendall, E. & Ogle, K. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob. Change Biol. 19, 252–263 (2013).

  • 15.

    Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. 4, 1–16 (2013).

  • 16.

    Crowther, T. W. & Bradford, M. A. Thermal acclimation in widespread heterotrophic soil microbes. Ecol. Lett. 16, 469–477 (2013).

  • 17.

    Melillo, J. M. et al. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).

  • 18.

    Luo, Y., Wan, S., Hui, D. & Wallace, L. L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413, 622–625 (2001).

  • 19.

    Sihi, D., Inglett, P., Gerber, S. & Inglett, K. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production. Glob. Change Biol. http://dx.doi.org/10.1111/gcb.13839 (2017).

  • 20.

    Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L. & Richter, A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol. Lett. 16, 930–939 (2013).

  • 21.

    Hagerty, S. B. et al. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat. Clim. Change 4, 903–906 (2014).

  • 22.

    Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Change 3, 395–398 (2013).

  • 23.

    Lang, B., Rall, B. C. & Brose, U. Warming effects on consumption and intraspecific interference competition depend on predator metabolism. J. Anim. Ecol. 81, 516–523 (2012).

  • 24.

    A’Bear, A. D., Boddy, L. & Hefin Jones, T. Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing collembola. Glob. Change Biol. 18, 1823–1832 (2012).

  • 25.

    Eliasson, P. E. et al. The response of heterotrophic CO2 flux to soil warming. Glob. Change Biol. 11, 167–181 (2005).

  • 26.

    Conant, R. T. et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011).

  • 27.

    Kirschbaum, M. Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob. Change Biol. 10, 1870–1877 (2004).

  • 28.

    Allison, S. D. & Treseder, K. K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob. Change Biol. 14, 2898–2909 (2008).

  • 29.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team et al.) (IPCC, 2014). 

  • 30.

    Schindlbacher, A. et al. Soil respiration under climate change: prolonged summer drought offsets soil warming effects. Glob. Change Biol. 18, 2270–2279 (2012).

  • 31.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2014).

  • 32.

    Rich, R. et al. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. Glob. Change Biol. 21, 2334–2348 (2015).

  • 33.

    Von Torne, E. Assessing feeding activities of soil-living animals. I. Bait-lamina-tests. Pedobiologia 34, 89–101 (1990).

  • 34.

    Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2923–2934 (2012).

  • 35.

    Lindberg, N., Engtsson, J. B. & Persson, T. Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. J. Appl. Ecol. 39, 924–936 (2002).

  • 36.

    Staley, J. T. et al. Effects of summer rainfall manipulations on the abundance and vertical distribution of herbivorous soil macro-invertebrates. Eur. J. Soil Biol. 43, 189–198 (2007).

  • 37.

    Eisenhauer, N. et al. Warming shifts ‘worming’: effects of experimental warming on invasive earthworms in northern North America. Sci. Rep. 4, 6890 (2014).

  • 38.

    Vasseur, D. A. & McCann, K. S. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. Am. Nat. 166, 184–198 (2005).

  • 39.

    Brown, J., Gillooly, J., Allen, A. & Savage, V. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

  • 40.

    Lang, B., Rall, B. C., Scheu, S. & Brose, U. Effects of environmental warming and drought on size-structured soil food webs. Oikos 123, 1224–1233 (2013).

  • 41.

    Gongalsky, K. B., Persson, T. & Pokarzhevskii, A. D. Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test. Appl. Soil Ecol. 39, 84–90 (2008).

  • 42.

    Davidson, E. A., Trumbore, S. E. & Amundson, R. Soil warming and organic carbon content. Nature 408, 789–790 (2000).

  • 43.

    Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).

  • 44.

    Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z. & Schepaschenko, D. G. Boreal forest health and global change. Science 349, 819–822 (2015).

  • 45.

    Schindlbacher, A., Jandl, R. & Schindlbacher, S. Natural variations in snow cover do not affect the annual soil CO2 efflux from a mid-elevation temperate forest. Glob. Change Biol. 20, 622–632 (2014).

  • 46.

    Gelman, A. & Yu-Sung, S. arm: Data Analysis Using Regression and Multilevel/Hierarchical Models. R Package v.1.8-6 (2015).

  • 47.

    Reich, P. B. et al. Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nat. Clim. Change 5, 148–152 (2015).

  • 48.

    Eisenhauer, N. et al. Organic textile dye improves the visual assessment of the bait-lamina test. Appl. Soil Ecol. 82, 78–81 (2014).

  • 49.

    Riutta, T., Clack, H., Crockatt, M. & Slade, E. M. Landscape-scale implications of the edge effect on soil fauna activity in a temperate forest. Ecosystems 19, 534–544 (2016).

  • 50.

    Simpson, J. E., Slade, E., Riutta, T. & Taylor, M. E. Factors affecting soil fauna feeding activity in a fragmented lowland temperate deciduous woodland. PLoS ONE 7, e29616 (2012).

  • 51.

    Birkhofer, K. et al. Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness. Soil Biol. Biochem. 43, 2200–2207 (2011).

  • 52.

    Bates, D., Maechler, M., Bolker, B. M. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  • 53.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: Tests in Linear Mixed Effects Models. R Package v.2.0-33 (2016).

  • 54.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

  • 55.

    Wood, S. N. Generalized Additive Models: an Introduction with R (Chapman and Hall, Boca Raton, USA, CRC, 2006).

  • 56.

    Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models Using ‘mgcv’ and ‘lme4’. R Package v.0.2-3 (2014).

  • 57.

    Van Rij, J. & Wieling, M. itsadug: Interpreting Time Series and Autocorrelated Data Using GAMMs. R Package v.2.2 (2016).

  • 58.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).