Warming alters energetic structure and function but not resilience of soil food webs

  • 1.

    Yvon-Durocher, G., Montoya, J. M., Trimmer, M. & Woodward, G. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Glob. Change Biol. 17, 1681–1694 (2011).

  • 2.

    Petchey, O. L., McPhearson, P. T., Casey, T. M. & Morin, P. J. Environmental warming alters food-web structure and ecosystem function. Nature 402, 69–72 (1999).

  • 3.

    Binzer, A., Guill, C., Rall, B. C. & Brose, U. Interactive effects of warming, eutrophication and size structure: Impacts on biodiversity and food-web structure. Glob. Change Biol. 22, 220–227 (2016).

  • 4.

    O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7, 3–8 (2009).

  • 5.

    Woodward, G. et al. Ecological networks in a changing climate. Adv. Ecol. Res. 42, 72–138 (2010).

  • 6.

    Rich, R. L. et al. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. Glob. Change Biol. 21, 2105–2464 (2015).

  • 7.

    Fussmann, K. E., Schwarzmüller, F., Brose, U., Jousset, A. & Rall, B. C. Ecological stability in response to warming. Nat. Clim. Change 4, 206–210 (2014).

  • 8.

    Thakur, M. P., Künne, T., Griffin, J. N. & Eisenhauer, N. Warming magnifies predation and reduces prey coexistence in a model litter arthropod system. Proc. R. Soc. B 284, 20162570 (2017).

  • 9.

    Rip, J. M. K. & McCann, K. S. Cross-ecosystem differences in stability and the principle of energy flux. Ecol. Lett. 14, 733–740 (2011).

  • 10.

    de Ruiter, P. C., Neutel, A.-M. M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995).

  • 11.

    Gilbert, B. et al. A bioenergetic framework for the temperature dependence of trophic interactions. Ecol. Lett. 17, 902–914 (2014).

  • 12.

    Barnes, A. D. et al. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nat. Commun. 5, 5351 (2014).

  • 13.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. B. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

  • 14.

    Ehnes, R. B., Rall, B. C. & Brose, U. Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecol. Lett. 14, 993–1000 (2011).

  • 15.

    Rall, B. C., Vucic-Pestic, O., Ehnes, R. B., Emmerson, M. & Brose, U. Temperature, predator-prey interaction strength and population stability. Glob. Change. Biol. 16, 2145–2157 (2010).

  • 16.

    De Vries, F. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change. 2, 276–280 (2012).

  • 17.

    Ledger, M. E., Brown, L. E., Edwards, F. K., Milner, A. M. & Woodward, G. Drought alters the structure and functioning of complex food webs. Nat. Clim. Change. 3, 223–227 (2012).

  • 18.

    Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).

  • 19.

    Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).

  • 20.

    De Ruiter, P. C. De et al. Simulation of nitrogen mineralization in the below-ground food webs of two winter wheat fields. J. Appl. Ecol. 30, 95–106 (1993).

  • 21.

    Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change. 6, 751–758 (2016).

  • 22.

    Lang, B., Rall, B. C., Scheu, S. & Brose, U. Effects of environmental warming and drought on size-structured soil food webs. Oikos 123, 1224–1233 (2014).

  • 23.

    DeAngelis, K. M. et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front. Microbiol. 6, 1–13 (2015).

  • 24.

    Kardol, P., Reynolds, W. N., Norby, R. J. & Classen, A. T. A. T. Climate change effects on soil microarthropod abundance and community structure. Appl. Soil Ecol. 47, 37–44 (2011).

  • 25.

    Thakur, M. P. et al. Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate–boreal forest ecotone. Oecologia 175, 713–723 (2014).

  • 26.

    Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).

  • 27.

    Hunt, H. W. et al. The detrital food web in a shortgrass prairie. Biol. Fertil. Soils 3, 57–68 (1987).

  • 28.

    Adu, J. K. & Oades, J. M. Utilization of organic materials in soil aggregates by bacteria and fungi. Soil Biol. Biochem. 10, 117–122 (1978).

  • 29.

    Eisenhauer, N. et al. Organic textile dye improves the visual assessment of the bait-lamina test. Appl. Soil Ecol. 82, 78–81 (2014).

  • 30.

    Neutel, A. M. et al. Reconciling complexity with stability in naturally assembling food webs. Nature 449, 599–602 (2007).

  • 31.

    Thakur, M. P. et al. Effects of soil warming history on the performances of congeneric temperate and boreal herbaceous plant species and their associations with soil biota. J. Plant Ecol. 10, 670–680 (2017).

  • 32.

    Scheu, S. Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biol. Biochem. 24, 1–6 (1992).

  • 33.

    Anderson, J. & Domsch, K. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978).

  • 34.

    Beck, T. et al. An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol. Biochem. 29, 1023–1032 (1997).

  • 35.

    Ruess, L. Studies on the nematode fauna of an acid forest soil: spatial distribution and extraction. Nematologica 41, 229–239 (1995).

  • 36.

    Bongers, T. De nematoden van Nederland; een Identificatietabel voor de in Nederland Aangetroffen Zoetwater-en Bodembewonende Nematoden (KNNV Uitgeverij, Utrecht, 1988).

  • 37.

    Yeates, G. W., Bongers, T., De Goede, R. G., Freckman, D. W. & Georgieva, S. S. Feeding habits in soil nematode families and genera-an outline for soil ecologists. J. Nematol. 25, 315–331 (1993).

  • 38.

    Okada, H., Harada, H. & Kadota, I. Fungal-feeding habits of six nematode isolates in the genus Filenchus. Soil Biol. Biochem. 37, 1113–1120 (2005).

  • 39.

    Yeates, G. W. Soil nematodes in terrestrial ecosystems. J. Nematol. 11, 213–229 (1979).

  • 40.

    Holtkamp, R. et al. Soil food web structure during ecosystem development after land abandonment. Appl. Soil Ecol. 39, 23–34 (2008).

  • 41.

    Kempson, D., Lloyd, M. & Ghelardi, R. A new extractor for woodland litter. Pedobiologia 3, 1–21 (1963).

  • 42.

    Schäfer, M. & Brohmer, P. Fauna von Deutschland: ein Bestimmungsbuch unserer heimischen Tierwelt (Quelle & Meyer, Wiebelsheim, 2006).

  • 43.

    Crotty, F. & Shepherd, M. A Key to Soil Mites in the UK (Field Studies Council, 2014); http://tombio.myspecies.info/files/MitesKeyTest-2014-03-07.pdf

  • 44.

    Swift, M. J., Heal, O. W. & Anderson, J. M. Decomposition in Terrestrial Ecosystems 5 (Univ. California Press, Berkeley and Los Angeles, 1979).

  • 45.

    Edwards, C. A. in Progress in Soil Biology (eds Graff, O. & Satchell, J.) 585–591 (North-Holland Publishing Company, New York, 1967).

  • 46.

    Mercer, R. D., Gabriel, A. G. A., Barendse, J., Marshall, D. J. & Chown, S. L. Invertebrate body sizes from Marion Island. Antarct. Sci. 13, 135–143 (2001).

  • 47.

    Teuben, A. & Verhoef, H. A. Direct contribution by soil arthropods to nutrient availability through body and faecal nutrient content. Biol. Fertil. Soils 14, 71–75 (1992).

  • 48.

    Berg, M. et al. Community food web, decomposition and nitrogen mineralisation in a stratified Scots pine forest soil. Oikos 94, 130–142 (2001).

  • 49.

    Didden, W. A. M. et al. Soil meso- and macrofauna in two agricultural systems: factors affecting population dynamics and evaluation of their role in carbon and nitrogen dynamics. Agric. Ecosyst. Environ. 51, 171–186 (1994).

  • 50.

    Freckman, D. W. & Caswell, E. P. The ecology of nematodes in agroecosystems. Annu. Rev. Phytopathol. 23, 275–296 (1985).

  • 51.

    Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288 (1982).

  • 52.

    Pollierer, M. M., Langel, R., Scheu, S. & Maraun, M. Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). Soil Biol. Biochem. 41, 1221–1226 (2009).

  • 53.

    Walter, D. E. & Proctor, H. C. Mites: Ecology, Evolution and Behaviour (Springer, Dordrecht Heidelberg, New York, London, 1999).

  • 54.

    Andrén, O. et al. Organic carbon and nitrogen flows. Ecol. Bull. 40, 85–126 (1990).

  • 55.

    Walter, D. E. & Ikonen, E. K. Species, guilds, and functional groups: taxonomy and behavior in nematophagous arthropods. J. Nematol. 21, 315–327 (1989).

  • 56.

    Scheu, S. & Falca, M. The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia 123, 285–296 (2000).

  • 57.

    Peters, R. H. The Ecological Implications of Body Size (Cambridge University Press, Cambridge, 1983).

  • 58.

    Wardle, D. A. & Ghani, A. A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol. Biochem. 27, 1601–1610 (1995).

  • 59.

    Salonen, K., Sarvala, J., Hakala, I. & Viljanen, M. L. Relation of energy and organic-carbon in aquatic invertebrates. Limnol. Oceanogr. 21, 724–730 (1976).

  • 60.

    Gongalsky, K. B., Persson, T. & Pokarzhevskii, A. D. Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test. Appl. Soil Ecol. 39, 84–90 (2008).

  • 61.

    von Törne, E. Assessing feeding activities of soil-living animals. I. Bait-lamina-tests. Pedobiologia 34, 89–101 (1990).

  • 62.

    Neutel, A.-M., Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: weak links in long loops. Science 296, 1120–1123 (2002).

  • 63.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2010).

  • 64.

    Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).

  • 65.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometric. J. 50, 346–363 (2008).

  • 66.

    Zuur, A. F., Ieni, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009).