Greenhouse gas emission curves for advanced biofuel supply chains

  • 1.

    Collins, M. et al. in IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (Cambridge Univ. Press, Cambridge, 2013).

  • 2.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 413–510 (Cambridge Univ. Press, Cambridge, 2014).

  • 3.

    Wise, M. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009).

  • 4.

    IEA World Energy Outlook 2014 (OECD/IEA, 2014).

  • 5.

    Kriegler, E. et al. The role of technology for achieving climate policy objectives: Overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change 123, 353–367 (2014).

  • 6.

    Rose, S. K. et al. Bioenergy in energy transformation and climate management. Climatic Change 123, 477–493 (2014).

  • 7.

    Sorda, G., Banse, M. & Kemfert, C. An overview of biofuel policies across the world. Energy Policy 38, 6977–6988 (2010).

  • 8.

    Leemans, R., van Amstel, A., Battjes, C., Kreileman, E. & Toet, S. The land cover and carbon cycle consequences of large scale utilizations of biomass as an energy source. Glob. Environ. Change 6, 556–563 (1996).

  • 9.

    Kartha, S. in Bioenergy and Agriculture: Promises and Challenges (eds Hazel, P. & Pachauri, R. K.) Ch. 4 (International Food Policy Research Institute, 2006).

  • 10.

    Sustainable Biofuels: Prospects and Challenges 37–48 (The Royal Society, 2008).

  • 11.

    Gallagher, E. The Gallagher Review of the Indirect Effects of Biofuels Production (The Renewable Fuels Agency, 2008).

  • 12.

    Searchinger, T. et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319, 1238–1240 (2008).

  • 13.

    Hoefnagels, R., Smeets, E. & Faaij, A. Greenhouse gas footprints of different biofuel production systems. Renew. Sustain. Energy Rev. 14, 1661–1694 (2010).

  • 14.

    Laborde, D. Assessing the Land Use Change Consequences of European Biofuel Policies Report no. S12.580403 (IFPRI, 2011).

  • 15.

    Wicke, B., Verwij, P., van Meijl, H., van Vuuren, D. & Faaij, A. P. C. Indirect land use change: review of existing models and strategies for mitigation. Biofuels 3, 87–100 (2012).

  • 16.

    Lamers, P. & Junginger, M. The ‘debt’ is in the detail: A synthesis of recent temporal forest carbon analyses on woody biomass for energy. Biofuels Bioprod. Bior. 7, 373–385 (2013).

  • 17.

    Plevin, R. J., Beckman, J., Golub, A. A., Witcover, J. & O’Hare, M. Carbon accounting and economic model uncertainty of emissions from biofuels-induced land use change. Environ. Sci. Technol. 49, 2656–2664 (2015).

  • 18.

    Chum, H. et al. in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) Ch. 2 (Cambridge University Press, Cambridge, 2011).

  • 19.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

  • 20.

    Gibbs, H. K. et al. Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ. Res. Lett. 3, 34001 (2008).

  • 21.

    Elshout, P. M. F. et al. Greenhouse-gas payback times for crop-based biofuels. Nat. Clim. Change 5, 604–610 (2015).

  • 22.

    Albanito, F. et al. Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: A global assessment. GCB Bioenerg. 8, 81–95 (2016).

  • 23.

    Fargione, J., Hill, J., Tilman, D., Polasky, S. & Hawthorne, P. Land clearing and the biofuel carbon debt. Science 319, 1235–1238 (2008).

  • 24.

    Creutzig, F. et al. Bioenergy andclimate change mitigation: An assessment. |GCB Bioenerg 7, 916–944 (2015).

  • 25.

    Schauberger, B. et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2016).

  • 26.

    Lobell, D. B. & Field, C. B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 14002 (2007).

  • 27.

    Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Ort, D. R. & No, J. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. 312, 1918–1921 (2006). 

  • 28.

    Urban, D., Roberts, M. J., Schlenker, W. & Lobell, D. B. Projected temperature changes indicate significant increase in interannual variability of U.S. maize yields: A Letter. Climatic Change 112, 525–533 (2012).

  • 29.

    Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).

  • 30.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

  • 31.

    Gingrich, S. et al. Exploring long-term trends in land use change and aboveground human appropriation of net primary production in nine European countries. Land Use Policy 47, 426–438 (2015).

  • 32.

    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

  • 33.

    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

  • 34.

    Friend, A. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl Acad. Sci. USA 111, 3280–3285 (2014).

  • 35.

    Müller, C. et al. Implications of climate mitigation for future agricultural production. Environ. Res. Lett. 10, 125004 (2015).

  • 36.

    Müller, C. et al. Global Gridded Crop Model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. Discuss. 1–39 (2016).

  • 37.

    Tavoni, M. & Socolow, R. Modeling meets science and technology: an introduction to a special issue on negative emissions. Climatic Change 118, 1–14 (2013).

  • 38.

    Daioglou, V., Wicke, B., Faaij, A. P. C. & van Vuuren, D. P. Competing uses of biomass for energy and chemicals: Implications for long-term global CO2 mitigation potential. GCB Bioenergy 7, 1321–1334 (2015).

  • 39.

    Malins, C., Searle, S. & Baral, A. A Guide for the Perplexed to the Indirect Effects of Biofuels Production (International Council on Clean Transportation, 2014).

  • 40.

    Gohin, A. Assessing the land use changes and greenhouse gas emissions of biofuels: elucidating the crop yield effects. Land Econ. 90, 575–586 (2014).

  • 41.

    European Union Directive 2015/1513 L239, 29 (European Commission, 2015).

  • 42.

    IPCC 2006 Guidelines for National Greenhouse Gas Inventories (National Greenhouse Gas Inventories Programme, IGES, 2006).

  • 43.

    European Parliament. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009. Off. J. Eur. Union 140, 16–62 (2009).

  • 44.

    Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis (US Environmental Protection Agency, 2010).

  • 45.

    Fearnside, P. M. Why a 100-year time horizon should be used for global warming mitigation calculations. Mitig. Adapt. Strateg. Glob. Change 7, 19–30 (2002).

  • 46.

    ICF Lifecycle Greenhouse Gas Emissions due to Increased Biofuel Production—Methods and Approaches to Account for Lifecycle Greenhouse Gas Emissions from Biofuels Production Over Time (US EPA, 2009).

  • 47.

    Humpenöder, F. et al. Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environ. Res. Lett. 9, 64029 (2014).

  • 48.

    Slade, R., Bauen, A. & Gross, R. Global bioenergy resources. Nat. Clim. Change 4, 99–105 (2014).

  • 49.

    Stehfest, E. et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model Description and Policy Applications (PBL Netherlands Environmental Assessment Agency, 2014).

  • 50.

    Beringer, T., Lucht, W. & Schaphoff, S. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 3, 299–312 (2011).

  • 51.

    Müller, C. et al. Drivers and patterns of land biosphere carbon balance reversal. Environ. Res. Lett. 11, 44002 (2016).

  • 52.

    Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the shared socioeconomic pathways. Glob. Environ. Chang. 42, 200–214 (2017).

  • 53.

    Samir, K. & Lutz, W. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).

  • 54.

    O’Neill, B. C. et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

  • 55.

    van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).

  • 56.

    Banse, M. et al. Global impact of multinational biofuel mandates on land use, feedstock prices, international trade and land-use greenhouse gas emissions. Landbauforschung 64, 59–72 (2014).

  • 57.

    Hoefnagels, R., Smeets, E. M. W. & Faaij, A. Greenhouse gas footprints of different biofuel production systems. Renew. Sustain. Energy Rev. 14, 1661–1694 (2010).

  • 58.

    Cherubini, F. GHG balances of bioenergy systems – Overview of key steps in the production chain and methodological concerns. Renew. Energy 35, 1565–1573 (2010).

  • 59.

    Haberl, H. et al. Correcting a fundamental error in greenhouse gas accounting related to bioenergy. Energy Policy 45, 18–23 (2012).

  • 60.

    Wise, M. et al. An approach to computing marginal land use change carbon intensities for bioenergy in policy applications. Energy Econ. 47, 307–318 (2015).